本文目录一览

1,做爱频率多少最好

一周2次 最佳
这个要看你的年龄是多大,如果20~30岁之间,3到4次可以帮助你提高很多意想不到的好处!

做爱频率多少最好

2,PQ3230做150W反激开关电源频率选多少合适

PQ3230 的AE是160。 做150W可以,频率用常规的60K/65K就行。变压器匝比用30:7 :5. 感量取0.2mH。

PQ3230做150W反激开关电源频率选多少合适

3,大家说说反激电源开关频率做150kHZ有没有什么问题能否

100W没事,10000W就不行了。
没有什么问题 能稳定使用
你好!开关频率的多少,要看你选用的IC参数吧!若IC本身就是150KHz的,那当然没问题啦!如有疑问,请追问。

大家说说反激电源开关频率做150kHZ有没有什么问题能否

4,反激开关电源想请教开关频率的问题

可以的。首先根据输入、输出电压、匝比计算大致的占空比:D=n*Vo/(1.414*VIn+nVo)再根据1.414*VIn*Iin=Vo*Io,估算平均输入电流。之后可估算原边最大峰值电流Ipk=2*Iin/D(不连续模式或者临界模式)若为连续模式则稍微复杂一些(但一般反激都会设计为不连续模式,这样变压器的磁滞回线利用率较高)好了,晓得Ipk、Uin、L、D就可以根据Ipk = (1.414Uin/L)*D*T,其中T就是周期;根据f=1/T,大致频率就可以估算了。这是我的方法,仅供参考哈!

5,正常情况下性生活频率多少为合适

最多是一周3次
一般一周一次比较适宜,身体好的可以一周两次
一周2到3次为佳,适当性生活有利身体健康。
最多一周一次
是一周2-3次

6,反激变换器工作频率

资料技术资讯反激变换器的典型应用2016年08月10日阅读 1471 1 前 言 反激变换器一个典型的应用场合是在逆变器中给IGBT的驱动提供辅助电源。此时反激变换器的开关管需要有比较高的击穿电压和快的开关速度。为了降低开关损耗,开通和关段的能量也要小。BIMOSFET的一个主要的优点就是它的开通损耗小,另外它的导通损耗也比较小。把MOSFET和BIMOSFET对比来看,BIMOSFET的损耗大概要小35%左右。 2 反激工作 反激变换器是最简单的变换器之一。其电路中只包括一个开关管,一个变压器,一个二极管和两个电容,如图一所示。变换器的能量储存在铁心的气隙中。开关管导通时,原边电流斜线上升,磁芯储能,关断时通过二极管传送到负载端。反激变换器的最大功率可以做到300W。 这个电路的优点是具有非常宽的输入输出电压比,并且可以增加辅助的线圈实现多路输出。另外,它能很好的实现原边和副边的电气隔离。它的缺点是开关管的电压应力比较高,变压器气隙产生的RFI辐射比较高。反激变换器不允许空载或者开环工作,否则输出电压将会超过允许的限度。 图1 反激变换器 3 反激变换器的应用 反激变换器一个主要的应用场合是在逆变器中给IGBT的驱动提供辅助电源。这种场合下的所有需要都可以通过反激变换器来实现。 图2中阴影部分所示的是逆变器的驱动电路,这里还包括一个启动电路。其辅助电源可以由非常少的器件构成,成本廉价。 图2 逆变器 由于变换器的输入电压就是直流母线电压,因此电压的变化范围比较宽。在母线电容充电的过程中,辅助电源必须在直流母线电压非常低的条件下工作,例如还有电机的制动状态。当直流母线电压上升到750V时,输出电压可以通过变化开关管的占空比很容易的调节。 所有的隔离直流输出都可以通过增加独立的辅助线圈来实现。比如5V给微处理器供电,正负15V给电流传感器,正15V给下面三个IGBT驱动,另外三个独立的正15V给上面的IGBT作驱动。 反激变换器作为逆变器驱动时重要的一点是需要高的电压应力。在反激变换器中,开关管的最高电压应力是输入电压的两倍。因此,开关管的最小耐压应该2×Vin。作为电机控制的标准逆变器其电源为400V,电动机在制动状态时直流母线电压高达750V。因此只要需要耐压值为1600V的开关管。 反激变换器开关频率通常取50k到100KHz。为减小开关损耗,开关时所需要的能量要尽量低。为了做到这一点,必须要求开关管的开关速度快。避免开通损耗一个比较常用的窍门是直到输出二极管电流降到零后(断续模式)再开通晶体管。这就需要在下一个周期开始之前,留出一定的死区时间。这种方法可以减小开关管和二极管的换向损耗,从而可以提高开关频率,减小变压器体积。 4 BIMOSFET芯片技术 标准高压IGBT对于反激变换器来说速度太慢。这种新型的高压BIMOSFET完全可以满足需要。 无论是MOSFETS说是IGBTS,其传统的结构通常是DMOS(双扩散金属氧化硅),就是在一层薄且低阻抗的硅衬底上生成一个硅外延层,如图3.a所示。 但是,当电压超过1200V时,承受阻断电压的N-硅层更倾向于图3.b所示无外延层的结构。这种结构也被称为“均匀基区结构”或是NPT。 参照图3.b,保留了IGBT中的PNPn结构,但是需要注意的是这里引入了一个N+集电极-短路模式,目的是减小PNP晶体管的电流增益,改善其关断性能。但是,在发射极和集电极之间有一个“自由”的寄生二极管,这也就是BIMOSFET首字母缩略词的由来。BIMOSFET的关断由集电极来控制。为了优化二极管的反向导通,不至于产生换向时带来的dv/dt问题,少数载流子的寿命应该通过辐照的方法降低下来。 有两种类型的BIMOSFET,一种称为标准型,类似于IGBT,其控制电压为VGE=15/0V;另一种“G”型,其门极电压和MOSFET一样,下节我们将来介绍它。此外,两者的静态和动态特性都是一样的。

7,100W反激开关电源效率大约多少

100W以上的基本上效率必须达到85%以上,才算达标在开关电源里面,小功率的效率做上去比较难,大功率的效率相对来说还是好做些,毕竟基数比较大,效率同为80%的100W与5W相比,5W的电路上只能消耗1.25W,而100W的可以再电路上损耗25W
一般单路输出76%左右 多路输出70% 如果技术过硬 可上80%
要做好电源,就要下成本,用好的芯片,可以做到90%.在网上找Power,这家电源管理芯片效率很高的.再看看别人怎么说的。

8,手淫频率多少最合适

你好 手淫频率每个月2到3次就可以了,频繁手淫对身体不好. 1.频繁手淫使人经常处于兴奋之中,得不到充分休息,容易感到疲劳、意志消沉、记忆力减退、理解力下降、失眠多梦、头昏头痛、耳鸣心慌等。但不具有特异性。 2.过度手淫可能导致生殖系统持续充血,男性容易出现前列腺炎、尿道炎等,女性出现慢性盆腔充血,导致下腹部坠痛、痛经、白带增多等。 3.由于手淫而出现自责自罪、悔恨交加、担心影响身体健康和以后的性功能,造成高度心理紧张,比手淫本身造成更大的危害。 4.如果手淫成为满足、解除紧张的唯一途径而过分依赖,说明个体的心理发育和社会适应能力遇到了问题。手淫成为了病态心理的反映。 建议尽量减少手淫,加强锻炼身体。

9,反激双路交叉调整率多少合适

反激电源多路输出交叉调整率控制理论上反激电源比正激电源更使用于多路输出,但实际上反击电源的多路输出交叉调整率比正激电源更难做,这主要是正激后面加了个偶合电感,而反激的漏感不是零。 很多人做反激电源时都遇到这个问题,一路输出稳定性非常好,但多路输出时没有直接取反馈的路的电压会随其他路的负载变化而剧烈变化,这是什么原因呢? 原来,在MOS关断,次级输出时能量的分配是有规律的,它是按漏感的大小来分配,具体是按匝比的平方来分配(这个可以证明,把其他路等效到一路就可得出结果)如:5V 3匝,漏感1uH,12V 7匝,如果漏感为(7/3)(平方)*1=5。4uH,则两路输出的电流变化率是一样的,没有交叉调整率的问题,但如果漏感不匹配时,就会有很多方面影响到输出调整率:1。次级漏感,这是明显的; 2,输入电压,如果设计不是很连续,则在高压时进入DCM状态,DCM时由于电流没有后面的平台,漏感影响更显著。 改进方法:1,变压器工艺,让功率比较大,电压比较低的绕组最靠近初级,其漏感最小,电压比较高,功率比较小的远离初级,这样就增加了其漏感。2,电路方法,电压输出较高的绕组在整流管前面加一个小的磁珠或一个小的电感,人为增加其漏感,这样电流的变化率就接近于主输出,电压就稳定。3,电压相近的输出,如:3。3V 5V,按我们的解释其漏感应该差别很小,这时就要把这两个绕组绕在同一层里面,甚至有时候5V要借用3。3的绕组,也就是所谓的堆叠绕法,来保证其漏感比。 另外有时候电压不平衡是由于算出的匝数不为整数造成的,如半匝,当然半匝是有办法绕的,但半匝的绕法也是很危险的(可参考其他资料),这是我们可以通过二极管的压降来调整,如12V用7匝,5V用3匝,如果发现12V偏高,则12V借用5V的3匝,但剩下的4匝的起点从5V输出的整流管后面连接,则12V的整流管的压降为两组输出整流管的压降和,如:0。5(5V)+0。7(12V)=1。2V,另外12V输出负载变化时,其电流必然引起5V整流管的压降变化,也就是5V输出变化,而5V的变化会通过反馈调整,这样也间接控制了12V

10,反激式开关电源为什么只适合做100W以下

反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。扩展资料:注意事项:1、设计反激开关电源时,在AC输入端和桥式整流之前要预留压敏电阻,NTC,X,Y电容,共模电感的位置。2、经过光耦反馈到IC的C引脚(光耦的好处:隔离了高压地和低压地,更安全)。3、当输出电压升高,光耦发光器LED更亮,从而受光器电流增大。电源IC减小MOSFET的G级的占空比,从而使输出电压稳定。反之当输出电压降低,光耦发光器LED变暗,从而受光器电流减小。4、电源IC增大MOSFET的G级的占空比,从而使输出电压稳定。参考资料来源:搜狗百科-反激式开关电源参考资料来源:搜狗百科-输出特性
反激式开关电源的优点和缺点  1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。  反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为 0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。即电压脉动系数 等于2,电流脉动系数等于4。反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的 两倍。由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比 一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。  2 反激式开关电源的瞬态控制特性相对来说比较差。  由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期 事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较 差。有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况 在电视机的开关电源中最容易出现。  3 反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。  反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。另一方面是因为 变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。因此,反激式开关电源变压器初级和次级线圈的漏感 都比较大,从而会降低开关电源变压器的工作效率,并且漏感还会产生反电动势,容易把开关管击穿。  4 反激式开关电源的优点是电路比较简单,体积比较小,反激式开关电源输出电压受占空比的调制幅度,相对于正激式开关电源来要高很多。  反激式开关电源的优点是电路比较简单,比正激式开关电源少用了一个大的储能滤波电感,以及一个续流二极管,一次,反激式开关电源的体积要比正激式开关 电源的体积小,且成本也要低。此外,反激式开关电源输出电压受占空比的调制幅度,相对于正激式开关电源来要高很多,因此,反激式开关电源要求调控占空比的 误差信号幅度要比较低,误差信号放大器的增益和动态范围也要较小。由于这些优点,目前,反激式开关电源在家电领域中还是被广泛的应用。  5 反激式开关电源多用于功率较小的场合或是多路输出的场合。  6 反激式开关电源不需要加磁复位绕组。  在反激式开关电源中,在开关管关断的时候,反激式变换器的变压器储能向负载释放,磁芯自然复位,不需要加磁复位措施。  7.在反激式开关电源中,电压器既具有储能的功能,有具有变压和隔离的功能。  正激式开关电源的优点和缺点  1 正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好。  正激式变压器开关电源正好是在变压器的初级线圈被直流电压激励时,变压器的次级线圈向负载提供功率输出,并且输出电压的幅度是基本稳定的,此时尽管输 出功率不停地变化,但输出电压的幅度基本还是不变,这说明正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好;只有在控制开关处于关断期间,功率 输出才全部由储能电感和储能电容两者同时提供,此时输出电压虽然受负载电流的影响,但如果储能电容的容量取得比较大,负载电流对输出电压的影响也很小。  2 正激式变压器开关电源负载能力相对来说比较强。  由于正激式变压器开关电源一般都是选取变压器输出电压的一周平均值,储能电感在控制开关接通和关断期间都向负载提供电流输出,因此,正激式变压器开关 电源的负载能力相对来说比较强,输出电压的纹波比较小。如果要求正激式变压器开关电源输出电压有较大的调整率,在正常负载的情况下,控制开关的占空比最好 选取在0.5左右,或稍大于0.5,此时流过储能滤波电感的电流才是连续电流。当流过储能滤波电感的电流为连续电流时,负载能力相对来说比较强。  3正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。  当控制开关的占空比为0.5时,正激式变压器开关电源输出电压uo的幅值正好等于电压平均值Ua的两倍,流过滤波储能电感电流的最大值Im也正好是平 均电流Io(输出电流)的两倍,因此,正激式变压器开关电源的电压和电流的脉动系数S都约等于2,而与反激式变压器开关电源的电压和电流的脉动系数S相 比,差不多小一倍,说明正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。  4正激式开关电源比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。  正激式变压器开关电源的缺点也是非常明显的。其中一个是电路比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。此外,正激式变压器 开关电源输出电压受占空比的调制幅度,相对于反激式变压器开关电源来说要低很多,这个从(1-77)和(1-78)式的对比就很明显可以看出来。因此,正 激式变压器开关电源要求调控占空比的误差信号幅度比较高,误差信号放大器的增益和动态范围也比较大。  5正激式开关电源的体积比较大。  正激式变压器开关电源为了减少变压器的励磁电流,提高工作效率,变压器的伏秒容量一般都取得比较大(伏秒容量等于输入脉冲电压幅度与脉冲宽度的乘积, 这里用US来表示),并且为了防止变压器初级线圈产生的反电动势把开关管击穿,正激式变压器开关电源的变压器要比反激式变压器开关电源的变压器多一个反电 动势吸收绕组,因此,正激式变压器开关电源的变压器的体积要比反激式变压器开关电源的变压器的体积大。  6正激式开关电源的变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。  正激式变压器开关电源还有一个更大的缺点是在控制开关关断时,变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。因为 一般正激式变压器开关电源工作时,控制开关的占空比都取在0.5左右,而反激式变压器开关电源控制开关的占空比都取得比较小。  7双管正激式转换器可以应用于较高电压输入,较大功率输出的场合。  推挽式开关电源的优点和缺点  1推挽式开关电源输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。  由于推挽式开关电源中的两个控制开关轮流交替工作,其输出电压波形非常对称,并且开关电源在整个周期之内都向负载提供功率的输出,因此,其输出电流瞬 态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。它在输入电压很低的情况下,仍然能维持很大的输出功率,所 以推挽式开关电源被广泛的应用于低输入电压的DC/AC逆变器,活DC/DC转换器电路中。  2 推挽式开关电源是一个输出电压特性很好的开关电源。  推挽式开关电源经桥式整流或全波整流后,其输出电压脉动系数和电流脉动系数都很小,因此,需要一个很小值的储能滤波电容或储能滤波电感就可以得到一个电压纹波和电流纹波很小的输出电压。因此,推挽式开关电源是一个输出电压特性很好的开关电源。  3推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,开关电源的工作效率跟高。  推挽式开关电源的变压器属于双极性磁化极,磁感应变压范围是单极性磁化极的两倍多,并且变压器铁芯不需要气隙,因此,推挽式开关电源变压器铁芯的磁导 率比单极性磁化极的正激或反激开关电源的变压器铁芯的磁导率高很多倍,这样推挽式开关电源变压器的初级、次级的线圈的匝数可比单极性磁化极变压器初级、次 级的线圈的匝数少一倍以上。所以,推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,所以开关电源的工作效率跟高。  4 推挽式开关电源的驱动电路简单。  推挽式开关电源的两个开关器件有一个公共接地端,相对于半桥式或全桥式开关电源来说,驱动电路简单的多。  5 推挽式开关电源不会像半桥、全桥式开关电源那样出现两个控制开关同时串通的可能性。  6 推挽式开关电源的主要缺点是两个开关器件需要很高的耐压值。  推挽式开关电源的主要缺点是两个开关器件需要很高的耐压,其耐压必须大于工作电压的两倍。因此,推挽式开关电源在220V交流供电设备中很少使用。另外,直流输出电压可调整式推挽开关电源 输出电压的调整范围比反激式开关电源输出电压的调整范围小很多,并需要一个储能滤波电感,因此,推挽式开关电源不宜用于要求负载电压变化范围太大的场合,特别是负载很轻或是经常开路的场合。  7推挽式开关电源的变压器有两组初级线圈,对于小功率输出的推挽式开关电源是个缺点,对于大功率输出的推挽式开关电源是个优点。因为大功率变压器的线 圈一般都是多股线来绕制的,因此,推挽式开关电源的变压器的两组初级线圈与用多股线绕制根本没有区别,并且两个线圈与单个线圈相比可以减低一半电流密度。  8 推挽式转换器可以看作两个正激式转换器的组合,在一个开关周期内,这两的正激式转换器交替的工作。若两个正激式变换器不完全对称或平衡时,就会出现直流偏磁的现象,经过几个周期累计的偏磁,会使磁芯进入饱和状态,并导致高频变压器的励磁电流过大,甚至损坏开关管。  9 推挽式、半桥式、全桥式转换器属于直流-交流-直流转换器。由于直流-交流转换器提高了工作频率,所以,变压器和输出滤波器的体积和重量都可以减小。  半桥式开关电源的优点和缺点  1 半桥式变压器开关电源输出功率很大,工作效率很高  半桥式变压器开关电源与推挽式变压器开关电源一样,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出 功率的两倍。因此,半桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅 需要很小的滤波电感和电容,其输出电压纹波和电流纹波就可以达到非常小。  2 半桥式开关电源的开关管的耐压值比较低。  半桥式变压器开关电源最大的优点是,对两个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。因为,半桥式变压器开关 电源两个开关器件的工作电压只有输入电源Ui的一半,其最高耐压等于工作电压与反电动势之和,大约是电源电压的两倍,这个结果正好是推挽式变压器开关电源 两个开关器件耐压的一半。因此,半桥式变压器开关电源主要用于输入电压比较高的场合,一般电网电压为交流220伏供电的大功率开关电源大部分都是用半桥式 变压器开关电源。  3半桥式开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。但对于大功率开关电源变压器的线圈绕制没有优势,因为,大功率开关电源变压器的线圈需要用多股线来绕制。  4 半桥式变压器开关电源的缺点主要是电源利用率比较低,因此,半桥式变压器开关电源不适宜用于工作电压较低的场合。另外,半桥式变压器开关电源中的两个开关器件连接没有公共地,与驱动信号连接比较麻烦。  4 半桥式开关电源的缺点是会出现半导通区,损耗大。  半桥式开关电源最大的缺点是,当两个控制开关K1和K2处于交替转换工作状态的时候,两个开关器件会同时出现一个很短时间的半导通区域,即两个控制开 关同时处于接通状态。这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通状态转换到截 止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程。  当两个开关器件分别处于导通和截止过渡过程时,即两个开关器件都处于半导通状态时半导通状态时,相当于两个控制开关同时接通,它们会造成对电源电压产 生短路;此时,在两个控制开关的串联回路中将出现很大的电流,而这个电流并没有通过变压器负载。因此,在两个控制开关K1和K2同时处于过渡过程期间,两 个开关器件将会产生很大的功率损耗。为了降低控制开关过渡过程产生的损耗,一般在半桥式开关电源电路中,都有意让两个控制开关的接通和截止时间错开一小段 时间。  5 单电容半桥式变压器开关电源比双电容半桥式变压器开关电源节省一个电容器,这是它的优点。另外,单电容半桥式变压器开关电源刚开始工作的时候,输出电压差 不多比双电容半桥式变压器开关电源是输出电压高一倍,这种特点最适用于作为荧光灯电源,例如,节能灯或日光灯以及LCD显示屏的背光灯等。  荧光灯一般开始点亮的时候需要很高的电压,大约几百伏到几千伏,而点亮以后工作电压才需要几十伏到1百多伏,因此,几乎所有的节能灯无一不是使用单电容半桥式变压器开关电源。  6单电容半桥式变压器开关电源也有缺点,就是开关器件的耐压要求比双电容半桥式变压器开关电源的耐压高。  全桥式开关电源的优点和缺点  1 全桥式变压器开关电源输出功率很大,工作效率很高。  全桥式变压器开关电源与推挽式变压器开关电源一样,由于两组开关器件轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输 出功率的两倍。因此,全桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,其输出电压的电压脉动系数Sv和电流脉动系数Si都很 小,仅需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。  2 全桥式开关电源的优点是开关管的耐压值特别的低。  全桥式变压器开关电源最大的优点是,对4个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。因为,全桥式变压器开关 电源4个开关器件分成两组,工作时2个开关器件互相串联,关断时,每个开关器件所承受的电压,只有单个开关器件所承受电压的一半。其最高耐压等于工作电压 与反电动势之和的一半,这个结果正好是推挽式变压器开关电源两个开关器件耐压的一半。  3 全桥式变压器开关电源主要用于输入电压比较高的场合,在输入电压很高的情况下,采用全桥式变压器开关电源,其输出功率要比推挽式变压器开关电源的输出功率 大很多。因此,一般电网电压为交流220伏供电的大功率开关电源大部分都是使用全桥式变压器开关电源。而在输入电压较低的情况下,推挽式变压器开关电源的 输出功率又要比全桥式变压器开关电源的输出功率大很多。  4 全桥式变压器开关电源的电源利用率比推挽式变压器开关电源的电源利用率低一些,因为2组开关器件互相串联,两个开关器件接通时总的电压降要比单个开关器件 接通时的电压降大一倍;但比半桥式变压器开关电源的电源利用率高很多。因此,全桥式变压器开关电源也可以用于工作电源电压比较低的场合。  5与半桥式开关电源一样,全桥式变压器开关电源的变压器初级线圈只需要一个绕组,这也是它的优点,这对小功率开关电源变压器的线圈绕制多少带来一些方便。但对于大功率开关电源变压器的线圈绕制没有优势,因为,大功率开关电源变压器的线圈需要用多股线来绕。  6 全桥式变压器开关电源的缺点主要是功率损耗比较较大,因此,全桥式变压器开关电源不适宜用于工作电压较低的场合,否则工作效率会很低。另外,全桥式变压器开关电源中的4个开关器件连接没有公共地,与驱动信号连接比较麻烦。  7 全桥式开关电源的缺点是会出现半导通区,损耗大。  全桥式开关电源最大的缺点是,当两组控制开关K1、K4和K2、K3处于交替转换工作状态的时候,4个开关器件会同时出现一个很短时间的半导通区域, 即两组控制开关同时处于接通状态。这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通 状态转换到截止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程。  当两组开关器件分别处于导通和截止过渡过程时,即两组开关器件都处于半导通状态时,相当于两组控制开关同时接通,它们会造成对电源电压产生短路;此 时,在4个控制开关的串联回路中将出现很大的电流,而这个电流并没有通过变压器负载。因此,在4个控制开关K1、K4和K2、K3同时处于过渡过程期 间,4个开关器件将会产生很大的功率损耗。为了降低控制开关过渡过程产生的损耗,一般在全桥式开关电源电路中,都有意让两组控制开关的接通和截止时间错开 一小段时间。  双端隔离式PWM DC/DC转换器,在一个开关周期内,功率从隔离变压器的初级绕组的一端和另一端交替的输入,故称双端。双端隔离式PWM DC/DC转换器的磁芯在B-H平面坐标系的第一和第三象限运

文章TAG:频率反激频率多少合适  做爱频率多少最好  
下一篇