本文目录一览

1,信号频率

信号带宽是信号频谱的宽度,也就是信号的最高频率分量与最低频率分量之差,譬如,一个由数个正弦波叠加成的方波信号,其最低频率分量是其基频,假定为f =2kHz,其最高频率分量是其7次谐波频率,即7f =7×2=14kHz,因此该信号带宽为7f - f =14-2=12kHz。 信道带宽则限定了允许通过该信道的信号下限频率和上限频率,也就是限定了一个频率通带。比如一个信道允许的通带为1.5kHz至15kHz,其带宽为13.5kHz,上面这个方波信号的所有频率成分当然能从该信道通过,如果不考虑衰减、时延以及噪声等因素,通过此信道的该信号会毫不失真。然而,如果一个基频为1kHz的方波,通过该信道肯定失真会很严重;方波信号若基频为2kHz,但最高谐波频率为18kHz,带宽超出了信道带宽,其高次谐波会被信道滤除,通过该信道接收到的方波没有发送的质量好;那么,如果方波信号基频为500Hz,最高频率分量是11次谐波的频率为5.5kHz,其带宽只需要5kHz,远小于信道带宽,是否就能很好地通过该信道呢?其实,该信号在信道上传输时,基频被滤掉了,仅各次谐波能够通过,信号波形一定是不堪入目的。 通过上面的分析并进一步推论,可以得到这样一些结果: (1)如果信号与信道带宽相同且频率范围一致,信号能不损失频率成分地通过信道; (2)如果带宽相同但频率范围不一致时,该信号的频率分量肯定不能完全通过该信道(可以考虑通过频谱搬移也就是调制来实现); (3)如果带宽不同而且是信号带宽小于信道带宽,但信号的所有频率分量包含在信道的通带范围内,信号能不损失频率成分地通过; (4)如果带宽不同而且是信号带宽大于信道带宽,但包含信号大部分能量的主要频率分量包含在信道的通带范围内,通过信道的信号会损失部分频率成分,但仍可能被识别,正如数字信号的基带传输和语音信号在电话信道传输那样; (5)如果带宽不同而且是信号带宽大于信道带宽,且包含信号相当多能量的频率分量不在信道的通带范围内,这些信号频率成分将被滤除,信号失真甚至严重畸变; (6)不管带宽是否相同,如果信号的所有频率分量都不在信道的通带范围内,信号无法通过; (7)不管带宽是否相同,如果信号频谱与信道通带交错,且只有部分频率分量通过,信号失真。 另外,我们在分析在信道上传输的信号时,不能总是认为其带宽一定占满整个信道,比如频带传输;即使信号占据整个信道,也不一定总是把它想像成一个方波,它也可能是其它的波形,比如在一个单频的正弦波上寄载其它模拟信号或数字信号而形成的复合波形。我们再举一些实例,进一步明晰信号与信道的带宽问题。 第一个例子仍是数字方波信号的基带传输(信号可能从零频率,也可能不是从零开始,直至某个较高的频率分量占满整个信道带宽,该较高频率分量通常由信道上限频率决定),我们知道,数字方波信号带宽可以无限,但信道带宽总是有限的,因此信道带宽限定了通过信道的信号带宽。如果信号基频和部分谐波能通过该信道,一般说来,接收到信号是可以被识别出的;如果信道的下限频率高于信号的基频,则基频甚至部分谐波被滤除,由于基频包含了信号的大部分能量(在时域图上反映出是所有叠加的信号波形中振幅最大的波形),因此接收到的信号难以识别。所以传输方波的信道要求其下限频率要低于信号的基频。 第二个例子是电话信道,假定其频率范围从300~3300Hz,带宽为3kHz,而语音信号频谱则一般为100Hz~7kHz的范围。电话信道将语音信号频谱掐头去尾,因为语音信号的主要能量集中在中心的一些频率分量附近,所以通过电话信道传输的语音信号,虽有失真,但仍能分辨。 第三个例子是电话线数字载波,即把数字信号调制到音频载波信号上,该载波是正弦波。电话线数据传输并不占满整个带宽,而是取中间部分频带,即600~3000Hz,带宽2400Hz。假定采用幅度调制(最简单的做法是通过在每个信号单元保留载波或除去载波来表示二进制的两种取值),如果采用全双工通信方式,则需将电话线数据信道一分为二,每个子信道各占1200Hz带宽,一个600~1800Hz,另一个1800~3000Hz;两个子信道的载波频率是各子信道中的中心频率,即分别为1200Hz和2400Hz,换句话说,每个中心频率两边各有一个600Hz的边带。 数字调频术和调相技术更复杂些,在时域上看,它们的每个信号单元周期时间可以与调幅相同;但从频域上看,每个周期内使载波频率和相位随着所表示的数值变化而发生改变,信号相位的变化实际上在幅-频频域图上也表现为频率的变化。尤其是当每个信号单元包含多个比特的情况,会产生多个频率分量。对于每个信号单元包含1个比特的情况,数字调频的每个子信道需要两个不同的频率表示二进制数字,也就是说,在2400Hz带宽的数据信道上有四个中心频率以及它们的边带。也就是说,分为了四段频带,600~1200Hz、1200~1800Hz、1800~2400Hz、2400~3000Hz;中心频率分别为900Hz、1500Hz、2100Hz和2700Hz。 第四个例子是无线调幅广播的模拟载波,即把语音、音乐等音频数据生成的原始电信号调制到具有某个广播频率的载波上(实际是频谱搬移,将相对较低的20Hz~20kHz频谱搬迁到较高300kHz~3MHz的频谱上)。无线信道利用的是自由空间,带宽似乎可以达到整个频谱,但实际上并非如此,首先,不同波段的频率需要不同的传播方式(地表导波、对流层散射、电离层反射、视线定向、空间转发)才能发挥最佳效率,不可能只采用一种传播方式使用如此广阔的频带;其次,频带跨度太大,不同频率分量传播的时延相差较远,不利于信号的正确识别和还原,数据率也因高低难以兼顾而受限;再则,无线信道是一种共享的公用广播信道,为了避免不同信源的相互干扰,在全球或者局部范围,必须进行信道分割与分配,分割出的每个信道根据不同的用途,其带宽相距很大,但不管多宽,都是很有限的;无论何种信号(即使理论上带宽无限的信号)在实际的传输中也不必一定要非常宽,也是允许损失一定频率成分的。无线调幅广播以载波频率为中心频率,将原始信号作为两个相同带宽的边带(上下边带)寄载到该载波上
信号不外乎用能源形式波作载体, 传送某种意义上数据, 如: 电磁信号, 发送端, 采用振荡器, 发出正/余弦波. 接收端采用调制解调器, 接收并分析收到的波(信号), 转换成脉冲电平信号. 信号载体(能量波)传递, 具有数学上的三角波形特征, 即 速度 = 波长*频率.你的信号频率, 指的是这个公式里的频率.

信号频率

2,低频中频和高频的范围分别是多少

00:00 / 00:2370% 快捷键说明 空格: 播放 / 暂停Esc: 退出全屏 ↑: 音量提高10% ↓: 音量降低10% →: 单次快进5秒 ←: 单次快退5秒按住此处可拖拽 不再出现 可在播放器设置中重新打开小窗播放快捷键说明

低频中频和高频的范围分别是多少

3,高速信号和低速信号有什么区别怎么定义高速和低速

高速信号,主要取决于是不是上升沿很陡,也就是说,上升沿越陡,就是个高速信号,反之就是低速信号。这点要和高频信号和低频信号区分开,如果一个很低频的信号,比如说25MHz,有个很快的上升沿,则这种信号就是高速信号!如果站着信号的频谱分析角度考虑的话,如果这个信号的傅里叶变换的高频分量(一般取50MHz以上)占整个信号的能量的1/3以上,那么就是高频信号。另外,如果是站在传输延时的角度考虑的话,上升时间。信号周期频率FclockF高的才属于高速信号。设计中需要考虑的最高频率往往取决于信号的有效频率Frms?。随着频率的升高,其各级谐波分量的幅值比理想方波中相同频率正弦波分量的幅值下降的更快,直到某级谐波分量,其幅值下降到理想方波中对应分量的70%(即功率下降到50%),定义该谐波分量的频率为信号的有效频率rmsf。对现实中的多数信号而言,有效频率计算公式为:高速与低速的区分,不仅取决于信号频率,还取决于信号传输路径的长度,仅仅依据信号频率, 并不能做出信号属于告诉还是低速的结论。 判断高速与低速的依据:信号有效频率、信号走线的长度。在信号的走线长度小于信号有效长度的1/6时,可认为在该传输路径上,各点的电平状态近似相同,为低速信号。信号有效长度u与信号有效频率rmsf的关系如下:D:为在pcb上走线延迟(ps/inch),在fr-4材质中d≈180ps/inch. 以上,已将要用到的概念定义清楚了,下面就来说明区分高速和低速信号的步骤: 1. 获得信号的有效频率rmsf和走线长度l; 2. 利用rmsf以及信号走线延时d,计算出信号的有效长度u; 3. 判断l与1/6×u之间的关系,若l﹥与1/6×u,则信号为高速信号,反之,则 为低速信号;

高速信号和低速信号有什么区别怎么定义高速和低速

4,什么是高速信号最好具体点权威一点的定义或者概念

  网上找的资料~  高速PCB设计  (一)、电子系统设计所面临的挑战  随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。  当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。  (二)、什么是高速电路  通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。  实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。  信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会改变逻辑状态。  (三)、高速信号的确定  上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间? 一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。下图为信号上升时间和允许的布线长度(延时)的对应关系。  PCB 板上每单位英寸的延时为 0.167ns.。但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。通常高速逻辑器件的信号上升时间大约为0.2ns。如果板上有GaAs芯片,则最大布线长度为7.62mm。  设Tr 为信号上升时间, Tpd 为信号线传播延时。如果Tr≥4Tpd,信号落在安全区域。如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。如果Tr≤2Tpd,信号落在问题区域。对于落在不确定区域及问题区域的信号,应该使用高速布线方法。

文章TAG:高速信号的频率最低是多少高速  信号  的频率  
下一篇