1,pwm死区间的时间如何设置

根据你的主电路功率管来选择。一般上臂和下臂的功率管的型号是一致的。只需要查该型号管子关断的时间比导通时间长多少,就要把死区时间设置为至少多少。
不明白啊 = =!

pwm死区间的时间如何设置

2,20KH开关电源的开关管IGBT死区时间如何确区

第一要看开关电源输出电流,IGBT电流越大,死区时间也要越长, 第二要看IGBT驱动设计,门级关断电阻太大则关断拖尾时间越长,此时死区也要加长, 第三IGBT要选择推荐开关频率15K~30KHz的 一般1200VIGBT,电流几十安培死区最小3uS,考虑效率,死区不宜过大,一般可取5uS。 要根据实验进一步确定 祝成功

20KH开关电源的开关管IGBT死区时间如何确区

3,请教IGBT 死区问题

IGBT死区是指从输出关断信号到IGBT真正截止的时间。由于IGBT等功率器件都存在一定的结电容,所以会造成器件导通关断的延迟现象。一般在设计电路时已尽量降低该影响,比如尽量提高控制极驱动电压电流,设置结电容释放回路等。为了使igbt工作可靠,避免由于关断延迟效应造成上下桥臂直通,有必要设置死区时间,也就是上下桥臂同时关断时间。死区时间可有效地避免延迟效应所造成的一个桥臂未完全关断,而另一桥臂又处于导通状态,避免直通炸模块。 死区时间大,模块工作更加可靠,但会带来输出波形的失真及降低输出效率。死区时间小,输出波形要好一些,只是会降低可靠性,一般为us级。一般来说死区时间是不可以改变的,只取决于功率元件制作工艺。

请教IGBT 死区问题

4,死区的概念及设计方法

死区主要是针对IGBT开关管来说的,理想情况下,逆变器的单桥臂的IGBT总是互补地导通和关断。但由于IGBT在关断过程中,存在拖尾效应,故关断时间比开通时间相对较长。若在关断过程中,同一桥臂上地IGBT立即导通,则必然导致直流母线电压直通而损害IGBT。这在高频开关电路显更为显著,因此,在实际应用中,使同一桥臂的上下IGBT的导通和关断错开一定的时间,即死区时间,以保证同一桥臂的上下IGBT总是先关断后导通。 注入死区时间地方法有多种,如对称式,混合式、延时导通以及提前导通补偿等。但最简单的实现方法是延时导通。硬件上可采取一个RC延时和一个或门来实现;软件则可直接调用延时程序来实现;对于2000系列DSP来说,可直接设置死区时间。
当前由功率开关管组成的桥式,半桥式的开关电路的驱动电路中,为了防止两个功率管在一个瞬间出现连接电源的正负极之间的同时导通事件。驱动电路在分别驱动两个功率管栅极的时间顺序中间插入一段由硬件逻辑控制的两个功率管全部截止一段时间的控制设计手段。即死区概念。

5,请教IGBT 死区问题

①②是错误的③是正确的假如是半桥电路上下桥臂开通和关断一定要有死去时间T如果没有,就直通了,烧毁IGBT
IGBT一般采用半桥/全桥应用,通过上下桥臂规律性的开关,对电流进行逆变。为了防止IGBT短路,在上下臂交替开关间会设置一个延时(死区时间),一般都是微妙级别。
igbt死区是指从输出关断信号到igbt真正截止的时间。由于igbt等功率器件都存在一定的结电容,所以会造成器件导通关断的延迟现象。一般在设计电路时已尽量降低该影响,比如尽量提高控制极驱动电压电流,设置结电容释放回路等。为了使igbt工作可靠,避免由于关断延迟效应造成上下桥臂直通,有必要设置死区时间,也就是上下桥臂同时关断时间。死区时间可有效地避免延迟效应所造成的一个桥臂未完全关断,而另一桥臂又处于导通状态,避免直通炸模块。 死区时间大,模块工作更加可靠,但会带来输出波形的失真及降低输出效率。死区时间小,输出波形要好一些,只是会降低可靠性,一般为us级。一般来说死区时间是不可以改变的,只取决于功率元件制作工艺。

6,如何计算示波器的死区时间

就要先说说示波器的工作流程,首先是触发,然后是波形采集、存储、处理,最后是波形显示。在存储、处理、显示的这段时间里,示波器是不采集信号的,属于示波器盲区,也就是死区时间。
计算示波器的死区时间的方法: 1、死区时间的大小影响着遗漏信号的多少,也决定了捕获异常信号概率的大小。 2、在相同的时基档位下,zds2024 plus有效采样时间为23.1%,普通示波器有效采样时间为0.2%,相当于在1s内zds2024 plus采集231ms,而普通示波器仅仅采集了20ms,相差20倍以上。 3、波形刷新率越高,死区时间就越短,捕获异常信号的概率就越高;波形刷新率越低,死区时间就越长,捕获异常信号的概率就越小。 4、数据采集过程和数据信号处理的过程属于串行关系,无法同时时进行运作,也就是采集过程无法实时的处理数据,所以若波形刷新率低,则在信号采集过程中可能导致漏掉关键的异常信号,给调试工程师一个错误的判断,无法将故障检测出来,大大延长调试时间,降低调试效率。死区时间是数字示波器与生俱来的缺陷,没有办法消除,但是可以尽量的减小。 5、死区时间与波形刷新率息息有关,要减少死区时间,必须增大波形刷新率,zds2024 plus示波器具有330kwfm/s的波形刷新率,让异常信号一览无余,zds4054 plus示波器具有1mwfm/s的波形刷新率,可以更快更可靠的查找故障,缩短故障排查所需要的时间。 数字示波器捕获信号的过程是典型的“采集-处理-采集-处理”过程。 死区时间(处理时间):是示波器对采样存储回来的数字信号进行测量运算,显示等处理的过程。

7,如何正确计算并最大限度减小的死区时间

如何计算IGBT模块所需最小死区时间?1 引言在现代工业中,IGBT器件在电压源逆变器中的使用越来越广泛。为了确保可靠地使用IGBT,必须避免出现桥臂直通现象。桥臂直通会产生额外的不必要功耗甚至热失控,可能会导致IGBT甚至整个逆变器出现故障。IGBT桥臂直通的原因典型的IGBT一个桥臂拓扑电路如下图所示,正常工作时,两个IGBT交替开通和关断,如果将两个IGBT管同一时间导通将会导致电流的上升,该电流仅受限于IGBT DC-link的杂散电感。Figure 1 Typical configuration of a voltage source inverter当然,没有人会故意将两个IGBT同时开通,但由于IGBT并不是一个理想的开关,开通和关断时间并不是严格相同。为了避免桥臂直通,总是推荐添加一个所谓的“互锁延迟时间”或称为“死区时间”到控制机制。这样,一个IGBT总会先关断,另一个在经过期望的死区时间后被开通。因此,可以避免由于不对称的开通和关断时间造成的桥臂直通现象。死区时间对逆变器工作的影响死区时间一般有两种,一是控制死区时间,二是有效死区时间。控制死区时间是在控制算法里执行的死区时间,是为了获得器件端合适的有效死区时间,设置控制死区时间的目标是为了确保有效死区时间总是正值。由于实际计算的控制死区时间总是基于最坏的情况,有效死区时间是控制死区时间的重要部分。死区时间一方面可以避免桥臂直通,另一方面也会带来不利影响。为了阐明死区时间的影响,我们考虑电压源逆变器的一个桥臂,如图2所示。假设首先输出电流的方向如图所示,IGBT管T1从开到关,IGBT管T2经过微弱的死区时间后从关到开。在有效死区时间内,两个管子都在断态,续流二极管D2传导输出电流。因而负边DC link电压施加到输出端,这种转换是被期望的。另一种情况,IGBT管T1从关到开,T2管从开到关,然后,D2仍然在死区时间内传输相同方向的电流。因此输出电压也是负边DC link电压,这种情况是不期望的。结论可概括如下:在有效死区时间内,输出电压由输出电流的方向决定,而不是控制信号。如果我们考虑图2中相反的电流方向,当T1从开到关,T2从关到开时,将会获得一个电压。所以,应用死区时间通常会使电压和电流产生扭曲。如果我们选择了一个不合适的较大的死区时间,会使感应电机系统变得不稳定,可能会造成一些破坏的情况。因此选择死区时间的过程是非常重要的,应仔细计算。Figure 2 One leg of voltage source inverter本文将解释如何测量IGBT实践中的延迟时间,和如何在测量的基础上正确地计算控制死区时间。
搜一下:如何正确计算并最大限度减小的死区时间

文章TAG:igbt死区时间设多少死区时间  时间  多少  
下一篇