1,IGBT的特性参数

IGBT的特性其实和三极管差不多 只不过场管是电压驱动元件它也有三种状态 截至 导通 饱和当然导通某个场管得具体看这个场管的系数 当外部电压达到导通电压时元件导通 有电流经过场管 当电压降低到某一导通阀值内也就截至了
导通阀值不可能为0,这是所有半导体功率器件的特点,一般都是0.5v~4v这样,至于igbt,阈值一般为2v左右

IGBT的特性参数

2,IGBT C极和E级之间的电容值应该怎么得到

任务占坑
IGBT管在导通时,其C极电压越低,IGBT管内部的损耗越小,反之则损耗越大。当IGBT管内部损耗超过规定值时,IGBT管会因为内部发热严重而烧坏。在电磁炉理想的工作状态下,IGBT管C极电压为0时开通IGBT,其内部损耗为0(W=UI),但实际在电磁炉工作时,C极电压不可能为0,所以只能取IGBT管C极最低电压时开通IGBT管,使IGBT管的开关损耗最小。所以同步就是IGBT管C极电压最低时的检测,也就是最佳的IGBT管导通时机。硬件类一般都上硬之城看那里比较专业,专业的问题专业解决,这是最快的也是最好的方法,好过自己瞎搞,因为电子元器件的电子型号那些太多了一不小心就会弄错,所以还是找专业的帮你解决。

IGBT C极和E级之间的电容值应该怎么得到

3,怎样用万用表测量IGBT

用万用表测IGBT只能测分别跟上下IGBT反并联的二极管,自己琢磨吧,很简单的一个道理。万用表有一个二极管导通压降的档
1.判定栅极g  将万用表拨至r×1k档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为g极,因为它和另外两个管脚是绝缘的。  2.判定源极s、漏极d  由图1可见,在源-漏之间有一个pn结,因此根据pn结正、反向电阻存在差异,可识别s极与d极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是s极,红表笔接d极。  3.测量漏-源通态电阻rds(on)  将g-s极短路,选择万用表的r×1档,黑表笔接s极,红表笔接d极,阻值应为几欧至十几欧。  由于测试条件不同,测出的rds(on)值比手册中给出的典型值要高一些。例如用500型万用表r×1档实测一只irfpc50型vmos管,rds(on)=3.2w,大于0.58w(典型值)。  检查跨导  将万用表置于r×1k(或r×100)档,红表笔接s极,黑表笔接d极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。  注意事项:  (1)vmos管亦分n沟道管与p沟道管,但绝大多数产品属于n沟道管。对于p沟道管,测量时应交换表笔的位置。  (2)有少数vmos管在g-s之间并有保护二极管,本检测方法中的1、2项不再适用。  (3)目前市场上还有一种vmos管功率模块,专供交流电机调速器、逆变器使用。例如美国ir公司生产的irft001型模块,内部有n沟道、p沟道管各三只,构成三相桥式结构。  (4)现在市售vnf系列(n沟道)产品,是美国supertex公司生产的超高频功率场效应管,其最高工作频率fp=120mhz,idsm=1a,pdm=30w,共源小信号低频跨导gm=2000μs。适用于高速开关电路和广播、通信设备中。  (5)使用vmos管时必须加合适的散热器后。以vnf306为例,该管子加装140×140×4(mm)的散热器后,最大功率才能达到30w。  (6)多管并联后,由于极间电容和分布电容相应增加,使放大器的高频特性变坏,通过反馈容易引起放大器的高频寄生振荡。为此,并联复合管管子一般不超过4个,而且在每管基极或栅极上串接防寄生振荡电阻。  本文参考: http://www.p-e-china.com

怎样用万用表测量IGBT

4,IGBT单管焊机的驱动电压一般是多少直流还是交流

IGBT单管焊机的驱动电压一般是2~3V,但是都不会超过18V。驱动必须使用交流电流。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V的IGBT 通态压降为2~3V 。IGBT 处于断态时,只有很小的泄漏电流存在。IGBT 的转移特性与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。扩展资料IGBT模块为MOSFET结构,IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般达到20~30V。因此因静电而导致栅极击穿是IGBT失效的常见原因之一。因此使用中要注意以下几点:在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸; 在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块; 尽量在底板良好接地的情况下操作。应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。通常采用双绞线来传送驱动信号,以减少寄生电感。此外,在栅极连线中串联小电阻也可以抑制振荡电压。在栅极—发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过。这时,如果集电极与发射极间存在高电压,则有可能使IGBT发热及至损坏。参考资料来源:百度百科—IGBT
方波不高于18v,有时是正负脉冲
这个一般由驱动电路电压确定,但是都不会超过18V。因它工作时是处于高速开关状态,所以直流是绝对不行的,但也不是正弦交流。而是一种高频方波脉冲,可以是几十到几百K的速度。
查你所用的IGBT手册,驱动电压时直流或直流脉冲。
驱动直流电压的范围是13V~18V,但是不同品牌的IGBT的驱动电压会有些误差,根据具体需要设置吧。
这个应该属于正常的 是vrd功能 只有焊接的时候才是真实电压,现在的27付是假输出可以这么理解,为什么设置者共功能的 因为正常的电压时70左右有时候在高空 换焊条啥的 有电到人 出事故的 所以27付是不会有这现象的

5,什么是igbt

IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。IGBT(绝缘栅双极晶体管)模块的参数: 集电极、发射极间电压(符号:VCES):栅极、发射极间短路时的集电极,发射极间的最大电压。  IGBT(绝缘栅双极晶体管)模块的参数: 栅极发极间电压(符号:VGES ):集电极、发射极间短路时的栅极,发射极间最大电压。  IGBT(绝缘栅双极晶体管)模块的参数: 集电极电流(符号:IC ):集电极所允许的最大直流电流。  IGBT(绝缘栅双极晶体管)模块的参数: 耗散功率(符号:PC):单个IGBT所允许的最大耗散功率。  IGBT(绝缘栅双极晶体管)模块的参数: 结温(符号:Tj):元件连续工作时芯片温厦。  IGBT(绝缘栅双极晶体管)模块的参数: 关断电流(符号:ICES ):栅极、发射极间短路,在集电极、发射极间加上指定的电压时的集电极电流。  IGBT(绝缘栅双极晶体管)模块的参数: 漏电流(符号:IGES ):集电极、发射极间短路,在栅极、集电极间加上指定的电压时的栅极漏电流。  IGBT(绝缘栅双极晶体管)模块的参数: 饱和压降(符号:V CE(sat) ):在指定的集电极电流和栅极电压的情况下,集电极、发射极间的电压。  IGBT(绝缘栅双极晶体管)模块的参数: 输入电容(符号:Clss ):集电极、发射极间处于交流短路状态,在栅极、发射极间及集电极、发射极间加上指定电压时,栅极、发射极间的电容。
他就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12v(大于6v,一般取12v到15v)时igbt导通,栅源极不加电压或者是加负压时,igbt关断,加负压就是为了可靠关断。 他没有放大袱珐递貉郛股店瘫锭凯电压的功能,导通时可以看做导线,断开时当做开路。 igbt有三个端子,分别是g,d,s,在g和s两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。如果撤掉加在gs两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。 参考资料:baike.baidu.com/view/115175.htm

6,美的电磁炉igbt怎么量

如何判断IGBT管的好坏:正常的IGBT管G极c/e极间正反向电阻均为无穷大;内含阻尼二极管的IGBT管的e、c极间正向电阻(红表笔接e极黑表笔接c极)3.5K左右,不含阻尼二极管的IGBT管e/c极间电阻均为50K左右,记住IGBT管中间脚为集电极(C极)。另外一个问题,电磁炉不通电,完全没反应,没有滴的声音,这一情况需要检查电源线,插座、电源电路了。
如何判定igbt管的好坏:正常的igbt管g极c/e极间正反向电阻均为无穷大;内含阻尼二极管的igbt管的e、c极间正向电阻(红表笔接e极黑表笔接c极)3.5k左右,不含阻尼二极管的igbt管e/c极间电阻均为50k左右,记住igbt管中间脚为集电极(c极)。 修电磁炉怕igbt烧管的绝招 ; 更换igbt同时记得把驱动管一起换掉(不管是好是坏;很多人测量没坏就没换;代价就是过不了多久再烧igbt;两个三极管最多1元;一个igbt就要翻十几翻了)还要检查下0.27uf或者0.3uf、5uf电容;一切就绪. 在交流220v上,串接一个60-100w的灯泡,加锅,接通电源:.若灯泡暗红(适用于插上220v后待机指示灯亮),开启电磁炉电源,灯泡一亮一暗地闪烁,(而插上220v后待机指示灯不亮),开启电磁炉电源,灯泡一亮即暗重开电源也是一亮即暗;表明电磁炉已经基本ok了。 若灯泡很亮,表明igbt管完全导通。此时,若拆除灯泡通电工作,必烧igbt管!应主要查修驱动谐振电容高压整流等电路。 .若灯泡暗红,开启电磁炉电源,灯泡亮度不变。则应主要查修面板控制微电脑供电副电源等电路。 .若灯泡暗红,开启电磁炉电源,灯泡一亮一暗地闪烁,但把锅具抬起灯泡很亮;属于抬锅炸igbt,应检查cpu驱动线盘。 电磁炉电路板简单维修方法;电路板烧igbt或保险丝的维修程序,电流保险丝或igbt烧坏,不能马上换上该零件,必须确认下列其它零件是在正常状态时才能进行更换,否则,igbt和保险丝又会烧坏。 1.目视电流保险丝是否烧断 2.检测igbt是否击穿: 用万用表二极管档测量igbt的“e”;“c”;“g”三极间是否击穿。 a:“e”极与“g”极;“c”极与“g”极,正反测试均不导通(正常)。 b:万用表红笔接”e“极,黑笔接“c”极有0.4v左右的电压降(型号为gt40t101三极全不通)。 3.测量互感器是否断脚,正常状态如下: 用万用表电阻档测量互感器次级电阻约80ω;初极为0ω。 4.整流桥是否正常(用万用表二极管档测试): a:万用表红笔接“-”,黑笔接“+”有0.9v左右的电压降,调反无显示。 b:万用表红笔接“-”,黑笔分别接两个输入端均有0.5v左右的电压降,调反无显示。 c:万用表黑笔接“+”,红笔分别接两个输入端均有0.5v左右的电压降,调反无显示。 5.检查电容(那几个大电容);是否受热损坏。(如果损坏已变形或烧熔) 6.igbt处热敏开关绝缘保护是否损坏。按键动作不良的检测测量cpu口线是否击穿; 按键动作不良 用万用表二极管档测量cpu极与接地端,均有0.7v左右的电压降,万用表红笔接“地”;黑笔接“cpu每一极口线”。否则,说明cpu口线击穿。希望对你有帮助

7,IGBT是什么

(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体
是场效应功率管
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 定义 IGBT结构图左边所示为一个N 沟道增强型绝缘栅双极晶体管结构, N+ 区称为源区,附于其上的电极称为源极。P+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。 IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT 关断。IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。 [编辑本段]工作特性 静态特性 IGBT 的静态特性主要有伏安特性、转移特性和开关特性。 IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。 IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。 IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示 Uds(on) = Uj1 + Udr + IdRoh 式中Uj1 —— JI 结的正向电压,其值为0.7 ~1V ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。 通态电流Ids 可用下式表示: Ids=(1+Bpnp)Imos 式中Imos ——流过MOSFET 的电流。 由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V的IGBT 通态压降为2 ~ 3V 。IGBT 处于断态时,只有很小的泄漏电流存在。 动态特性 IGBT 在开通过程中,大部分时间是作为MOSFET 来运行的,只是在漏源电压Uds 下降过程后期, PNP 晶体管由放大区至饱和,又增加了一段延迟时间。td(on) 为开通延迟时间, tri 为电流上升时间。实际应用中常给出的漏极电流开通时间ton 即为td (on) tri 之和。漏源电压的下降时间由tfe1 和tfe2 组成。 IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。因为IGBT栅极- 发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。 IGBT在关断过程中,漏极电流的波形变为两段。因为MOSFET关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间,td(off)为关断延迟时间,trv为电压Uds(f)的上升时间。实际应用中常常给出的漏极电流的下降时间Tf由图中的t(f1)和t(f2)两段组成,而漏极电流的关断时间 t(off)=td(off)+trv十t(f) 式中,td(off)与trv之和又称为存储时间。 IGBT的开关速度低于MOSFET,但明显高于GTR。IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极和发射极并联电阻的增加而增加。IGBT的开启电压约3~4V,和MOSFET相当。IGBT导通时的饱和压降比MOSFET低而和GTR接近,饱和压降随栅极电压的增加而降低。 正式商用的IGBT器件的电压和电流容量还很有限,远远不能满足电力电子应用技术发展的需求;高压领域的许多应用中,要求器件的电压等级达到10KV以上,目前只能通过IGBT高压串联等技术来实现高压应用。国外的一些厂家如瑞士ABB公司采用软穿通原则研制出了8KV的IGBT器件,德国的EUPEC生产的6500V/600A高压大功率IGBT器件已经获得实际应用,日本东芝也已涉足该领域。与此同时,各大半导体生产厂商不断开发IGBT的高耐压、大电流、高速、低饱和压降、高可靠性、低成本技术,主要采用1um以下制作工艺,研制开发取得一些新进展。 [编辑本段]发展历史 1979年,MOS栅功率开关器件作为IGBT概念的先驱即已被介绍到世间。这种器件表现为一个类晶闸管的结构(P-N-P-N四层组成),其特点是通过强碱湿法刻蚀工艺形成了V形槽栅。 80年代初期,用于功率MOSFET制造技术的DMOS(双扩散形成的金属-氧化物-半导体)工艺被采用到IGBT中来。[2]在那个时候,硅芯片的结构是一种较厚的NPT(非穿通)型设计。后来,通过采用PT(穿通)型结构的方法得到了在参数折衷方面的一个显著改进,这是随着硅片上外延的技术进步,以及采用对应给定阻断电压所设计的n+缓冲层而进展的[3]。几年当中,这种在采用PT设计的外延片上制备的DMOS平面栅结构,其设计规则从5微米先进到3微米。 90年代中期,沟槽栅结构又返回到一种新概念的IGBT,它是采用从大规模集成(LSI)工艺借鉴来的硅干法刻蚀技术实现的新刻蚀工艺,但仍然是穿通(PT)型芯片结构。[4]在这种沟槽结构中,实现了在通态电压和关断时间之间折衷的更重要的改进。 硅芯片的重直结构也得到了急剧的转变,先是采用非穿通(NPT)结构,继而变化成弱穿通(LPT)结构,这就使安全工作区(SOA)得到同表面栅结构演变类似的改善。 这次从穿通(PT)型技术先进到非穿通(NPT)型技术,是最基本的,也是很重大的概念变化。这就是:穿通(PT)技术会有比较高的载流子注入系数,而由于它要求对少数载流子寿命进行控制致使其输运效率变坏。另一方面,非穿通(NPT)技术则是基于不对少子寿命进行杀伤而有很好的输运效率,不过其载流子注入系数却比较低。进而言之,非穿通(NPT)技术又被软穿通(LPT)技术所代替,它类似于某些人所谓的“软穿通”(SPT)或“电场截止”(FS)型技术,这使得“成本—性能”的综合效果得到进一步改善。 1996年,CSTBT(载流子储存的沟槽栅双极晶体管)使第5代IGBT模块得以实现[6],它采用了弱穿通(LPT)芯片结构,又采用了更先进的宽元胞间距的设计。目前,包括一种“反向阻断型”(逆阻型)功能或一种“反向导通型”(逆导型)功能的IGBT器件的新概念正在进行研究,以求得进一步优化。 IGBT功率模块采用IC驱动,各种驱动保护电路,高性能IGBT芯片,新型封装技术,从复合功率模块PIM发展到智能功率模块IPM、电力电子积木PEBB、电力模块IPEM。PIM向高压大电流发展,其产品水平为1200—1800A/1800—3300V,IPM除用于变频调速外,600A/2000V的IPM已用于电力机车VVVF逆变器。平面低电感封装技术是大电流IGBT模块为有源器件的PEBB,用于舰艇上的导弹发射装置。IPEM采用共烧瓷片多芯片模块技术组装PEBB,大大降低电路接线电感,提高系统效率,现已开发成功第二代IPEM,其中所有的无源元件以埋层方式掩埋在衬底中。智能化、模块化成为IGBT发展热点。 现在,大电流高电压的IGBT已模块化,它的驱动电路除上面介绍的由分立元件构成之外,现在已制造出集成化的IGBT专用驱动电路.其性能更好,整机的可靠性更高及体积更小。 [编辑本段]输出特性与转移特性 IGBT与MOSFET的对比MOSEFT全称功率场效应晶体管。它的三个极分别是源极(S)、漏极(D)和栅极(G)。主要优点:热稳定性好、安全工作区大。缺点:击穿电压低,工作电流小。 IGBT全称绝缘栅双极晶体管,是MOSFET和GTR(功率晶管)相结合的产物。它的三个极分别是集电极(C)、发射极(E)和栅极(G)。特点:击穿电压可达1200V,集电极最大饱和电流已超过1500A。由IGBT作为逆变器件的变频器的容量达250kVA以上,工作频率可达20kHz。 [编辑本段]模块简介 IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。 若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOS 截止,切断PNP晶体管基极电流的供给,使得晶体管截止。IGBT与MOSFET一样也是电压控制型器件,在它的栅极—发射极间施加十几V的直流电压,只有在uA级的漏电流流过,基本上不消耗功率。 [编辑本段]等效电路 IGBT模块的选择 IGBT模块的电压规格与所使用装置的输入电源即试电电源电压紧密相关。其相互关系见下表。使用中当IGBT模块集电极电流增大时,所产生的额定损耗亦变大。同时,开关损耗增大,使原件发热加剧,因此,选用IGBT模块时额定电流应大于负载电流。特别是用作高频开关时,由于开关损耗增大,发热加剧,选用时应该降等使用。 使用中的注意事项 由于IGBT模块为MOSFET结构,IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般达到20~30V。因此因静电而导致栅极击穿是IGBT失效的常见原因之一。因此使用中要注意以下几点: 在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸; 在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块; 尽量在底板良好接地的情况下操作。 在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为此,通常采用双绞线来传送驱动信号,以减少寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。 此外,在栅极—发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过。这时,如果集电极与发射极间存在高电压,则有可能使IGBT发热及至损坏。 在使用IGBT的场合,当栅极回路不正常或栅极回路损坏时(栅极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止此类故障,应在栅极与发射极之间串接一只10KΩ左右的电阻。 在安装或更换IGBT模块时,应十分重视IGBT模块与散热片的接触面状态和拧紧程度。为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。一般散热片底部安装有散热风扇,当散热风扇损坏中散热片散热不良时将导致IGBT模块发热,而发生故障。因此对散热风扇应定期进行检查,一般在散热片上靠近IGBT模块的地方安装有温度感应器,当温度过高时将报警或停止IGBT模块工作。 保管时的注意事项 一般保存IGBT模块的场所,应保持常温常湿状态,不应偏离太大。常温的规定为5~35℃ ,常湿的规定在45~75%左右。在冬天特别干燥的地区,需用加湿机加湿; 尽量远离有腐蚀性气体或灰尘较多的场合; 在温度发生急剧变化的场所IGBT模块表面可能有结露水的现象,因此IGBT模块应放在温度变化较小的地方; 保管时,须注意不要在IGBT模块上堆放重物; 装IGBT模块的容器,应选用不带静电的容器。 IGBT模块由于具有多种优良的特性,使它得到了快速的发展和普及,已应用到电力电子的各方各面。因此熟悉IGBT模块性能,了解选择及使用时的注意事项对实际中的应用是十分必要的。

文章TAG:igbt极间电容一般取多少igbt  极间电容  电容  
下一篇