boost电路负载该接多少,开关电源做BOOST神呀电路输出3036V可调接入50欧姆的负载后
来源:整理 编辑:亚灵电子网 2023-04-01 03:40:29
1,开关电源做BOOST神呀电路输出3036V可调接入50欧姆的负载后
你加负载的情况下测一下输入电源,有可能是输入的电源提供不了那么大的电流,所以电源就直接被拉下来了
2,Boost电路中负载开路经过足够长的时间负载侧电压为多少
约等于电源电压。因为不升压就是电源电压经过电感,二极管,到负载。

3,焦耳小偷boost升压电路空载电压
你好!我做过,没有你说的情况啊仅代表个人观点,不喜勿喷,谢谢。
4,开关电源做BOOST神呀电路输出3036V可调接入50欧姆的负载后输出电压只
你加负载的情况下测一下输入电源,有可能是输入的电源提供不了那么大的电流,所以电源就直接被拉下来了
5,怎样让boost电路输出负电压
采用负电源供电,并且用反型号的开关器件(例如P沟道的FET管或PNP管),即可完成极性相反的对偶的拓扑设计。一定要这样拧着用boost电路吗,用个极性反转型的开关电路不是更方便吗。
6,设计boost电路输入范围为1016v输出为50v最大输出电流为1a如果开关
在电感足够大时,可认为通过电感电流是恒定的,电容足够大那么上面电压是恒定的 管子导通时,积蓄的能量为Ud*I*ton, 管子关断后,放掉的能量为(Uo-E)*I*toff 由于管子积蓄和放掉的能量相等,故Ud*I*ton=(Uo-E)*I*toff,I相等 ton:toff=(Uo-E)/Ud=(75-50)/50=1:2 (1)即导通时间为三分一,开关频率为100K,即周期为10us,那么导通时间为3.33us (2)输出功率为Uo*Uo/RL=75*75/15=375W (3)Q=CU=IT,取电容放电状态(即管子导通时)来算,此系统的I=UO/RL=75/15=5A 那么C=I*Ton/U=5*3.33us/0.05v=333UF 好久没做题了,仅供参考,不保证没错,嘿嘿
7,请教一个Boost升压电路问题带不了负载
这个比较简单的吧,公式是输出电压=输入电压/(1-d)数据代入计算就行了。100=50/(1-d) 计算可得占空比d=0.5150=50/(1-d) 计算可得占空比d=2/3所以占空比的变化范围是50%—67%空载,由於有反馈的存在,是不会出现这个问题的 如果没有反馈,那就是输出和输入一样的电压了,加了负载,也是和输入电压一样,BOOST电路不能工作
8,boost升压电路的输出可以比输入大多少输入165可以输出250V
常见升压电路:输入电压低于设定电压时,输出为你设定的电压输出输入电压高于设定电压时,输出为接近输入电压极限电压是多少,光理论计算不管用,涉及实际电路以及元件质量、安装工艺等,如果负载电流不大,或如你所说用电容储存后短时间放电,上百倍应该可以达到。如果16.5V——250V完全不成问题,并可以持续输出。当然考虑能量守恒,需要耗费很大的输入电流,得到的输出电流不会很大。
9,关于boost升压电路的问题
过流说得我不是特别明白,我只能大概分析下原因,而且你现在也是在仿真不是实际调试。过流原因可能有:1:触发脉冲的占空比太大由Uo=Ui*T/Toff当触发脉冲的占空比过大时所以有启动时输出已经过压的可能从而导致负载过流。2:电感过小导致流过开关管的电流过流,电感过小时电感在开关管导通时容易饱和从而导致在开关管导通时很快进入短路状态(建议驱动频率低时电感要选择大点的)3:为达到滤波的效果升压电路后级采用的电容滤波也有可能导致过流。因为导通瞬间电容近似短路,当电容大时短路效果越明显。综述:改进方案是提高触发脉冲频率,采用软起动,电感也可调整。希望对你有所帮助d=(vomax-vin)/vomax=0.828电感电流il=io/(1-d)=3/29/(1-0.828)=0.6al=vin*d/f/il=5*0.828/40*1000/0.6=173uh.纹波取0.4, 最大电流ipk=il*(1+0.4/2)=0.72a所以你要去找一个,173uh, 额定电流大于0.72a的电感。如果还有问题请到大比特论坛问我,如果帮上了你的忙还望采纳答案!
10,boost电路
摘要:提出了一种Boost电路软开关实现方法,即同步整流加上电感电流反向。根据两个开关管实现软开关的条件不同,提出了强管和弱管的概念,给出了满足软开关条件的设计方法。一个24V输入,40V/2.5A输出,开关频率为200kHz的同步Boost变换器样机进一步验证了上述方法的正确性,其满载效率达到了96.9% 关键词:升压电路;软开关;同步整流 引言 轻小化是目前电源产品追求的目标。而提高开关频率可以减小电感、电容等元件的体积。但是,开关频率提高的瓶颈是器件的开关损耗,于是软开关技术就应运而生。一般,要实现比较理想的软开关效果,都需要有一个或一个以上的辅助开关为主开关创造软开关的条件,同时希望辅助开关本身也能实现软开关。 Boost电路作为一种最基本的DC/DC拓扑而广泛应用于各种电源产品中。由于Boost电路只包含一个开关,所以,要实现软开关往往要附加很多有源或无源的额外电路,增加了变换器的成本,降低了变换器的可靠性。 Boost电路除了有一个开关管外还有一个二极管。在较低压输出的场合,本身就希望用一个MOSFET来替换二极管(同步整流),从而获得比较高的效率。如果能利用这个同步开关作为主开关的辅助管,来创造软开关条件,同时本身又能实现软开关,那将是一个比较好的方案。 本文提出了一种Boost电路实现软开关的方法。该方案适用于输出电压较低的场合。 1 工作原理 图1所示的是具有两个开关管的同步Boost电路。其两个开关互补导通,中间有一定的死区防止共态导通,如图2所示。通常设计中电感上的电流为一个方向,如图2第5个波形所示。考虑到开关的结电容以及死区时间,一个周期可以分为5个阶段,各个阶段的等效电路如图3所示。下面简单描述了电感电流不改变方向的同步Boost电路的工作原理。在这种设计下,S2可以实现软开关,但是S1只能工作在硬开关状态。 1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流线性增加。在t1时刻,S1关断,该阶段结束。 2)阶段2〔t1~t2〕S1关断后,电感电流对S1的结电容进行充电,使S2的结电容进行放电,S2的漏源电压可以近似认为线性下降,直到下降到零,该阶段结束。 3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。 4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性减小,直到S2关断,该阶段结束。 5)阶段5〔t4~t5〕此时电感L上的电流方向仍然为正,所以该电流只能转移到S2的寄生二极管上,而无法对S1的结电容进行放电。因此,S1是工作在硬开关状态的。 接着S1导通,进入下一个周期。从以上的分析可以看到,S2实现了软开关,但是S1并没有实现软开关。其原因是S2关断后,电感上的电流方向是正的,无法使S1的结电容进行放电。但是,如果将L设计得足够小,让电感电流在S2关断时为负的,如图4所示,就可以对S1的结电容进行放电而实现S1的软开关了。 在这种情况下,一个周期可以分为6个阶段,各个阶段的等效电路如图5所示。其工作原理描述如下。 1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流正向线性增加,从负值变为正值。在t1时刻,S1关断,该阶段结束。 2)阶段2〔t1~t2〕S1关断后,电感电流为正,对S1的结电容进行充电,使S2的结电容放电,S2的漏源电压可以近似认为线性下降。直到S2的漏源电压下降到零,该阶段结束。 3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。 4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性?小,直到变为负值,然后S2关断,该阶段结束。 5)阶段5〔t4~t5〕此时电感L上的电流方向为负,正好可以使S1的结电容进行放电,对S2的结电容进行充电。S1的漏源电压可以近似认为线性下降。直到S1的漏源电压下降到零,该阶段结束。 6)阶段6〔t5~t6〕当S1的漏源电压下降到零之后,S1的寄生二极管就导通,将S1的漏源电压箝在零电压状态,也就是为S1的零电压导通创造了条件。 接着S1在零电压条件下导通,进入下一个周期。可以看到,在这种方案下,两个开关S1和S2都可以实现软开关。 2 软开关的参数设计 以上用同步整流加电感电流反向的办法来实现Boost电路的软开关,其中两个开关实现软开关的难易程度并不相同。电感电流的峰峰值可以表示为 ΔI=(VinDT)/L (1) 式中:D为占空比; T为开关周期。 所以,电感上电流的最大值和最小值可以表示为 Imax=ΔI/2+Io (2) Imin=ΔI/2-Io (3) 式中:Io为输出电流。 将式(1)代入式(2)和式(3)可得 Imax=(VinDT)/2L+Io (4) Imin=(VinDT)/2L-Io (5) 从上面的原理分析中可以看到S1的软开关条件是由Imin对S2的结电容充电,使S1的结电容放电实现的;而S2的软开关条件是由Imax对S1的结电容充电,使S2的结电容放电实现的。另外,通常满载情况下|Imax| |Imin|。所以,S1和S2的软开关实现难易程度也不同,S1要比S2难得多。这里将S1称为弱管,S2称为强管。 强管S2的软开关极限条件为L和S1的结电容C1和S2的结电容C2谐振,能让C2上电压谐振到零的条件,可表示为式(6)。 将式(4)代入式(6)可得 实际上,式(7)非常容易满足,而死区时间也不可能非常大,因此,可以近似认为在死区时间内电感L上的电流保持不变,即为一个恒流源在对S2的结电容充电,使S1的结电容放电。在这种情况下的ZVS条件称为宽裕条件,表达式为式(8)。 (C2+C1)Vo≤(VinDT/2L+Io)tdead2 (8) 式中:tdead2为S2开通前的死区时间。 同理,弱管S1的软开关宽裕条件为 (C1+C2)Vo≤(VinDT/2L-Io)tdead1 (9) 式中:tdead1为S1开通前的死区时间。 在实际电路的设计中,强管的软开关条件非常容易实现,所以,关键是设计弱管的软开关条件。首先确定可以承受的最大死区时间,然后根据式(9)推算出电感量L。因为,在能实现软开关的前提下,L不宜太小,以免造成开关管上过大的电流有效值,从而使得开关的导通损耗过大。 3 实验结果 一个开关频率为200kHz,功率为100W的电感电流反向的同步Boost变换器进一步验证了上述软开关实现方法的正确性。 该变换器的规格和主要参数如下: 输入电压Vin24V 输出电压Vo40V 输出电流Io0~2.5A 工作频率f200kHz 主开关S1及S2IRFZ44 电感L4.5μH 图6(a),图6(b)及图6(c)是满载(2.5A)时的实验波形。从图6(a)可以看到电感L上的电流在DT或(1-D)T时段里都会反向,也就是创造了S1软开关的条件。从图6(b)及图6(c)可以看到两个开关S1和S2都实现了ZVS。但是从电压vds的下降斜率来看S1比S2的ZVS条件要差,这就是强管和弱管的差异。 图7给出了该变换器在不同负载电流下的转换效率。最高效率达到了97.1%,满载效率为96.9%。 4 结语 本文提出了一种Boost电路软开关实现策略:同步整流加电感电流反向。在该方案下,两个开关管根据软开关条件的不同,分为强管和弱管。设计中要根据弱管的临界软开关条件来决定电感L的大小。因为实现了软开关,开关频率可以设计得比较高。电感量可以设计得很小,所需的电感体积也可以比较小(通常可以用I型磁芯)。因此,这种方案适用于高功率密度、较低输出电压的场合。麻烦采纳,谢谢!
文章TAG:
boost电路负载该接多少boost 电路 电路负载
相关文章推荐
- BA6208是什么芯片,BA6247是什么芯片?
- 松下npm贴片机多少钱,买松下贴片机多少钱
- A9智能电视处理器能跑多少分,A9频率14怎么442系统和422系统安兔兔跑分一样
- 03db是多少,30wt等于多少
- 占空比多少有意义,占空比控制有什么优点
- 电路正负极颠倒危害,锂电池正负极接反
- 电路图中网孔,电路中网格的概念
- 电路板的硬件调试,简述硬件电路的设计流程
- 安桥818音箱设置多少,安桥818音频输入如何设置
- mos管电压等级,关于mos管的导通电压
- 正负极交换芯片,芯片的正负极
- 消除反电动势电压,反电动势消除电路
- 57AY161是什么芯片,A5657N是什么芯片?
- 安全芯片应用原理,什么是安全芯片?
- hx48电路图,xh-m401电路图