1,IGBT的驱动电流一般是多大

这要根据IGBT的型号来决定(耐压耐流越大,IGBT的G极和C极间的等效电容越大,所需的电流越大),跟开关频率也有关系(开关频率越大,所需电流越大),一般驱动电流为零点几A到几A(5A一下),驱动电路不能太大,否则会造成IGBT驱动信号的干扰,导致误导通。

IGBT的驱动电流一般是多大

2,IGBT主要技术参数

绝缘栅双极晶体管缩写IGBT IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。IGBT基本结构见图1中的纵剖面图及等效电路。 导通 IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和N+ 区之间创建了一个J1结。 当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流); 空穴电流(双极)。 关断 当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。 鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的,尾流特性与VCE、 IC和 TC之间的关系如图2所示。 反向阻断 当集电极被施加一个反向电压时, J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。 第二点清楚地说明了NPT器件的压降比等效(IC 和速度相同) PT 器件的压降高的原因。 正向阻断 当栅极和发射极短接并在集电极端子施加一个正电压时,P/N J3结受反向电压控制。此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。 闩锁 IGBT在集电极与发射极之间有一个寄生PNPN晶闸管,如图1所示。在特殊条件下,这种寄生器件会导通。这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。通常情况下,静态和动态闩锁有如下主要区别: 当晶闸管全部导通时,静态闩锁出现。 只在关断时才会出现动态闩锁。这一特殊现象严重地限制了安全操作区 。 为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施: 防止NPN部分接通,分别改变布局和掺杂级别。 降低NPN和PNP晶体管的总电流增益。 此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。因此,器件制造商必须注意将集电极最大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。 正向导通特性 在通态中,IGBT可以按照“第一近似”和功率MOSFET驱动的PNP晶体管建模。图3所示是理解器件在工作时的物理特性所需的结构元件(寄生元件不考虑在内)。 如图所示,IC是VCE的一个函数(静态特性),假如阴极和阳极之间的压降不超过0.7V,即使栅信号让MOSFET沟道形成(如图所示),集电极电流IC也无法流通。当沟道上的电压大于VGE -Vth 时,电流处于饱和状态,输出电阻无限大。由于IGBT结构中含有一个双极MOSFET和一个功率MOSFET,因此,它的温度特性取决于在属性上具有对比性的两个器件的净效率。功率MOSFET的温度系数是正的,而双极的温度系数则是负的。本图描述了VCE(sat) 作为一个集电极电流的函数在不同结温时的变化情况。当必须并联两个以上的设备时,这个问题变得十分重要,而且只能按照对应某一电流率的VCE(sat)选择一个并联设备来解决问题。有时候,用一个NPT进行简易并联的效果是很好的,但是与一个电平和速度相同的PT器件相比,使用NPT会造成压降增加。 动态特性 动态特性是指IGBT在开关期间的特性。鉴于IGBT的等效电路,要控制这个器件,必须驱动MOSFET 元件。 这就是说,IGBT的驱动系统实际上应与MOSFET的相同,而且复杂程度低于双极驱动系统。如前文所述,当通过栅极提供栅正偏压时,在MOSFET部分形成一个N沟道。如果这一电子流产生的电压处于0.7V范围内, P+ / N- 则处于正向偏压控制,少数载流子注入N区,形成一个空穴双极流。导通时间是驱动电路的输出阴抗和施加的栅极电压的一个函数。通过改变栅电阻Rg (图4)值来控制器件的速度是可行的,通过这种方式,输出寄生电容Cge和 Cgc可实现不同的电荷速率。 换句话说,通过改变 Rg值,可以改变与Rg (Cge+Cgc) 值相等的寄生净值的时间常量(如图4所示),然后,改变dV/dti。数据表中常用的驱动电压是15V。一个电感负载的开关波形见图5,di/dt是Rg的一个函数,如图6所示,栅电阻对IGBT的导通速率的影响是很明显的。 因为Rg数值变化也会影响dv/dt斜率,因此,Rg值对功耗的影响很大 。 在关断时,再次出现了我们曾在具有功率MOSFET和 BJT 器件双重特性的等效模型中讨论过的特性。当发送到栅极的信号降低到密勒效应初始值时,VCE开始升高。如前文所述,根据驱动器的情况,VCE达到最大电平而且受到Cge和 Cgc的密勒效应影响后,电流不会立即归零,相反会出现一个典型的尾状,其长度取决于少数载流子的寿命。 在IGBT处于正偏压期间,这些电荷被注入到N区,这是IGBT与MOSFET开关对比最不利特性之主要原因。降低这种有害现象有多种方式。例如,可以降低导通期间从P+基片注入的空穴数量的百分比,同时,通过提高掺杂质水平和缓冲层厚度,来提高重组速度。由于VCE(sat) 增高和潜在的闩锁问题,这种排除空穴的做法会降低电流的处理能力。 安全运行区SOA 按电流和电压划分,一个IGBT的安全运行区可以分为三个主要区域,如下表所示: 这三个区域在图8中很容易识别 。 通常每一张数据表都提供了正向导通(正向偏置安全运行区FBSOA)、反向(反向偏置安全运行区RBSOA)和短路(短路安全运行SCSOA)时描述强度的曲线。 详细内容: FBSOA 这部分安全运行区是指电子和空穴电流在导通瞬态时流过的区域。在IC处于饱和状态时,IGBT所能承受的最大电压是器件的物理极限,如图8所示。 RBSOA 这个区域表示栅偏压为零或负值但因空穴电流没有消失而IC依然存在时的关断瞬态。如前文所述,如果电流增加过多,寄生晶体管会引发闩锁现象。当闩锁发生时,栅极将无法控制这个器件。最新版的IGBT没有这种类型的特性,因为设计人员改进了IGBT的结构及工艺,寄生SCR的触发电流较正常工作承受的触发电流(典型Ilatch>5 IC 正常)高出很多。关于闭锁电流分别作为结温和栅电阻的一个函数的变化情况,见图9和10。 SCSOA SCSOA是在电源电压条件下接通器件后所测得的驱动电路控制被测试器件的时间最大值。图11所示是三个具有等效特性但采用不同技术制造的器件的波形及关断时间 。 最大工作频率 开关频率是用户选择适合的IGBT时需考虑的一个重要的参数,所有的硅片制造商都为不同的开关频率专门制造了不同的产品。 特别是在电流流通并主要与VCE(sat)相关时,把导通损耗定义成功率损耗是可行的。 这三者之间的表达式:Pcond = VCE IC ,其中, 是负载系数。 开关损耗与IGBT的换向有关系;但是,主要与工作时的总能量消耗Ets相关,并与终端设备的频率的关系更加紧密。 Psw = Ets 总损耗是两部分损耗之和: Ptot = Pcond + Psw 在这一点上,总功耗显然与Ets 和 VCE(sat)两个主要参数有内在的联系。 这些变量之间适度的平衡关系,与IGBT技术密切相关,并为客户最大限度降低终端设备的综合散热提供了选择的机会。 因此,为最大限度地降低功耗,根据终端设备的频率,以及与特殊应用有内在联系的电平特性,用户应选择不同的器件。

IGBT主要技术参数

3,P001IGBT技术

IGBT (Insulated Gate Bipolar Transistor)全称“绝缘栅双极晶体管”,其芯片与动力电池电芯并称为电动车的 “双芯”,是影响电动车性能的关键技术。 IGBT的源头——单晶硅,需要电子纯化,99.999999999%高纯度多晶硅;基于金刚石的线切割法将硅锭切成一片片晶圆,同一块硅锭产出晶圆越薄,产生的数量越多,生产成本将会下降,于是晶圆厂不懈追求着晶圆片的薄度;在晶圆这个地基上,层层叠叠堆积电路,逐层构建芯片的梁和柱。 IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件。 IGBT具有以下特点:高输入阻抗,可采用通用低成本的驱动线路;高速开关特性;导通状态低损耗。 IGBT兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点,在综合性能方面占有明显优势,非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 IGBT最常见的形式其实是模块(Module),而不是单管。多个芯片以绝缘方式组装到金属基板上;空心塑壳封装,与空气的隔绝材料是高压硅脂或者硅脂,以及其他可能的软性绝缘材料;同一个制造商、同一技术系列的产品,IGBT模块的技术特性与同等规格的IGBT 单管基本相同。 ——多个IGBT芯片并联,IGBT的电流规格更大。 ——多个IGBT芯片按照特定的电路形式组合,如半桥、全桥等,可以减少外部电路连接的复杂性。 ——多个IGBT芯片处于同一个金属基板上,等于是在独立的散热器与IGBT芯片之间增加了一块均热板,工作更可靠。 ——一个模块内的多个IGBT芯片经过了模块制造商的筛选,其参数一致性比市售分立元件要好。 ——模块中多个IGBT芯片之间的连接与多个分立形式的单管进行外部连接相比,电路布局更好,引线电感更小。 ——模块的外部引线端子更适合高压和大电流连接。同一制造商的同系列产品,模块的最高电压等级一般会比IGBT 单管高1-2个等级,如果单管产品的最高电压规格为1700V,则模块有2500V、3300V 乃至更高电压规格的产品。 晶圆上的一个最小全功能单元称为Cell,晶圆分割后的最小单元,构成IGBT 单管或者模块的一个单元的芯片单元,合称为IGBT的管芯。一个IGBT管芯称为模块的一个单元,也称为模块单元、模块的管芯。模块单元与IGBT管芯的区别在最终产品,模块单元没有独立的封装,而管芯都有独立的封装,成为一个IGBT管。 近来还有一种叫IPM的模块,把门级驱动和保护电路也封装进IGBT模块内部,这是给那些最懒的工程师用的,不过工作频率自然不能太高咯。 单管的价格要远低于模块,但是单管的可靠性远不及模块。全球除特斯拉和那些低速电动车外,全部都是使用模块。 擅长小功率作战的MOS管芯片,虽然为手机、电脑带来更快的运行速度,但其 耐压低,在高电压、大电流应用中损耗大的弱点,使之无法投入到大功率作战中 。 导通压降小、耐压高、输出功率高的IGBT芯片 此时露出它锋利的武器,吞噬着MOS的份额。对于电动车而言,IGBT直接控制驱动系统直、交流电的转换,决定了车辆的扭矩和最大输出功率等。 不仅电机驱动要用IGBT,新能源的发电机和空调部分一般也需要IGBT。不仅是新能源车,直流充电桩和机车(高铁)的核心也是IGBT管,直流充电桩30%的原材料成本就是IGBT。电力机车一般需要 500 个IGBT 模块,动车组需要超过100个IGBT模块,一节地铁需要50-80个 IGBT 模块。IGBT本身是一个非通即断的开关,导通时可以看作导线,断开时可以看作开路。在电机驱动控制器中, IGBT主要负责将动力电池传输的直流电转化为交流电。 电流从上而下垂直穿过IGBT,直至抵达驱动电机。芯片越薄,电流所上面流过的路径就越短,损耗在芯片上的能量也就随之降低。有人说,IGBT并不是一个理想开关,原因在于它在导通之时有 饱和电压——Vcesat,造成导通损耗 ;在开关时也有开关能 耗——Eon和Eoff。 IGBT在它们的打击下性能减弱。若IGBT受到的损耗降低,整车电耗也将明显降低。 概括说来, 为了降低整车电耗,必须有意将Vcesat和开关损耗降到更低。 Vcesat和Eoff是一对矛盾体,对同一代的IGBT技术来讲,Vcesat做小,Eoff就高了,反之亦然。它们必须相互妥协,相互折衷。这一点就比较考验制造商的能力了。 基于场终止技术设计的IGBT芯片(又被称为软穿通或者轻穿通IGBT),在NPT基础上增加了复合场终止层,将芯片厚度减薄。 如比亚迪4.0代IGBT,从原来的180um减薄至120um(约两根头发丝直径)。为了减少能耗,比亚迪的解决方案是, 增加复合场终止层,减薄N-漂移区(漂移区的正向压降与厚度密切相关) 。 场终止层是为了能够截止电场。 “通过一个 多层的场终止结构 ,优化电阻分布”。N-漂移区更薄, 电阻越小,Vcesat损耗更低 ;更薄N-层导通时存储的 过剩载流子总量更少 ,缩短关断时间,减少关断损耗。最终达到一个整体电耗的降低。 比如比亚迪4.0IGBT,与2.5代相比,比亚迪IGBT 4.0代Eoff降低了30%,而且Vcesat也从2.25V降至2.05V。与主流产品相比,它在Vcesat和Eoff之间的平衡能力也更优异。通过精细化平面栅设计,将IGBT元胞的面积缩小 51%(元胞的功能是降低导通压降、增加输出功率)。通常,一个IGBT芯片在结构上是由数十万个元胞组成。于是,元胞面积缩小后,同样的芯片中可包含更多的元胞, 电流密度也由此提升2 0%。 与此同时,驱动门极(电压高低,决定门极给出开还是关的信号)启动的功率更低,并且加快开关速度,同样有利于降低整车能耗和系统干扰。 功率半导体企业业已预见到,IGBT的硅基材料性能可能无法满足未来更高的需求。现在,它们已开始寻求更低芯片损耗、更强电流输出能力、更耐高温的全新半导体材料。如半导体材料SiC(高纯碳化硅粉)。 SiC能将新能源车的效率再提高10%,这是新能源车提高效率最有效的技术。 目前限制SiC应用主要是两方面,一是价格,其价格是传统Si型IGBT的6倍。其次是电磁干扰。 SiC的开关频率远高于传统Si型IGBT,回路寄生参数已经大到无法忽略。对日本厂家来说,SiC基板都没有丝毫难度,三菱、丰田、罗姆、富士电机、日立、瑞萨、东芝都有能力自己制造,全部是内部开发的技术。意法半导体技术也不错。车用IGBT的散热效率要求比工业级要高得多,逆变器内温度最高可达大20度,同时还要考虑强振动条件,车规级的IGBT远在工业级之上。 工业级IGBT与车规级IGBT对比:解决散热的第一点,就是 提高 IGBT模块内部的导热导电性能、 耐受功率循环的能力, IGBT模块内部引线技术经历了粗铝线键合、 铝带键合再到铜线键合的过程,提高了载流密度。第二点,新的焊接工艺,传统焊料为锡铅合金, 成本低廉、工艺简单, 但存在环境污染问题, 且车用功率模块的芯片温度已经接近锡铅焊料熔点(220℃)。解决该问题的新技术主要有: 低温银烧结技术和瞬态液相扩散焊接 。与传统工艺相比, 银烧结技术的导热性、耐热性更好, 具有更高的可靠性。瞬态液相扩散焊接通过特殊工艺形成金属合金层, 熔点比传统焊料高, 机械性能更好。三菱则使用超声波焊接。第三点,改进DBC和模块底板,降低散热热阻, 提高热可靠性, 减小体积,降低成本等。以 AlN 和 AlSiC 等材料取代 DBC 中的Al2O3和Si3N4等常规陶瓷,热导率更高,与Si 材料的热膨胀系数匹配更好。 此外,新型的散热结构,如 Pin Fin结构 和 Shower Power结构, 能够显著降低模块的整体热阻,提高散热效率。第四就是扩大模块与散热底板间的连接面积,如端子压接技术。 IGBT的正面工艺和标准BCD的LDMOS没区别,区别在背面,背面工艺有几点: 首先是 减薄 ,大约需要减薄6-8毫米,减得太多容易碎片,减得太少没有效果。接下来是 离子注入 ,注入一层薄磷做缓冲层,第四代需要两次注入磷,本来硅片就很薄了,两次注入很容易碎片。然后是 清洗 ,接下来 金属化 ,在背面蒸镀一层钛或银,最后是 Alloy ,因为硅片太薄,很容易翘曲或碎片。英飞凌特别擅长减薄技术。 IGBT关断时容易在过压、过流条件下出现动态雪崩电流丝化问题,若发展为二度动态雪崩 (标志是集电极—发射极电压关断波形出现 负阻凹陷区 )则会把器件引入具有失效危险的工作区。而工业生产中通常采用 减薄芯片结合提高基区电阻率(降低掺杂浓度)的方法来改善IGBT关断能耗Eoff 与通态压降VCE(on)的折中关系,很容易诱发动态雪崩现象,直接影响器件的坚固性和安全工作区(SOA)面积。 通过对器件内部动态雪崩电流成丝信息的提取和分析,可以分析不同漂移区厚度d和掺杂浓度ND对动态雪崩电流成丝程度的影响,在ND - d平面上定量确定了漂移区设计中的二度动态雪崩临界线,明确区分了二度动态雪崩区与安全区。 背面设计方面, 降低背P区掺杂浓度和降低场终止层掺杂浓度这两种方案都有利于临界线向扩张安全区的方向变动 ,让原处于二度动态雪崩区的危险设计点变得安全;前者改善电流分布均匀性的效果更明显,但在应用条件需要避免高换相dv/dt时,采用后一种方案更为合适。 门极驱动电路的作用:放大输出功率,以达到驱动IGBT功率器件的目的。 降低门极电量能减少驱动电路带来的能耗,提高开关速度,更小的门极振荡。 最小门极电阻确定了最大门极峰值电流。增大门极峰值电流能减小开关时间,从而降低开关损耗。 但最大的门极峰值电流又受限于驱动的输出能力。驱动的规格书中一般会定义最大门极电流输出能力,即定义了最小允许的门极电阻,应用中应考虑这个因素避免驱动过载失效。IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT 关断。如果提高开通门极电压+VGE,开通速度会上升,开通损耗会下降。相反,开通时的噪声干扰会增加。同样,如果提高关断门极电压-VGE,关断速度会上升,关断损耗会下降。相反,关断时的浪涌电压及噪声干扰会增加。丰田19,国内只有8,差距很大。

P001IGBT技术


文章TAG:igbt模块引线的电流密度是多少igbt模块  模块  引线  
下一篇