1,电动汽车蓄电池充放电电流响应的速度要求

这要看你的电池的荷电状态,如是在20%-60%之间,那么快速响应时间在10秒左右.

电动汽车蓄电池充放电电流响应的速度要求

2,蓄电池额定电压

铅酸蓄电池的额定电压一般是2的倍数,因为不管是多大的电池,都是由2V的单体电池串联或并联起来的。
你供选的答案里没一个正确的答案的,它是一道迷惑你的题。铅酸蓄电池单体的额定电压是2v,但实际蓄电池的真实电压在饱荷电状态下是高于2v。你的题是问额定电压所以就是2v。所谓额定电压:就是规定数目的电压.而铅酸电池的额定电压就是2v

蓄电池额定电压

3,雷克蓄电动电池180型充电负载电压是多少

雷克蓄电动电池180型参数:品牌:雷克 型号:180AAA 化学类型:铅酸蓄电池 电压:12(V) 类型:牵引型蓄电池荷电状态:带液充电态蓄电池 电池盖和排气拴结构:开口式蓄电池 额定容量:150ah 外型尺寸:360x170x280(mm) 日常充电电流:15A,充电电压:(12V)最大不超过14.5V
550

雷克蓄电动电池180型充电负载电压是多少

4,超威铅酸蓄车电池8DZM20是多少伏

数字8代表电压是16伏,数字为6代表电压为12伏。
8-DZM-20表示16V-20AH容量的蓄电池
大概是500到600 品牌 超威 型号 8-dzm-20 化学类型 铅酸蓄电 池 电压 64v(v) 类型 动力型蓄电池 荷电状态 免 维护蓄电池
12V的,铅酸电池的电压都是12V的,你这个电池是20安时的容量。有用点赞!

5,铅酸蓄电池充电

脉冲分阶段恒流快速充电方法能很好地适应混合动力汽车铅酸蓄电池在变电流放电状态下,充电时间短,使蓄电池荷电状态 SOC 始终保持在 50%-80%范围内的要求。试验表明,只需要 196 秒,就可以使蓄电池电量从50%C 充到 80%C。这种充电方法基本满足了蓄电池的接受曲线,蓄电池的温升较小,产生气体少,压力效应不大,而且充电时间短。(理士蓄电池)  最优的充电方式是充电电流始终遵循固有充电接受曲线,在充电过程中,充电接受率保持不变,随着时间的增加,充电电流按固有充电接受曲线递减(指数曲线递减),这样充电时间最短。脉冲去极化充电方法能实现快速、高效率充电,但设备昂贵,对某些蓄电池不适用。
你好:铅酸电池采用定电流充电的方法是:分三个阶段充电,第一个阶段采用10小时充电率充电,即60被10除等于6,充点电电流选择6安培,当蓄电池的单格端电压达到2.4伏时,进入第二阶段充电,采用20小时充电率,选择3安培的电流充电,当单格电压到达2.7伏时,选择.15安培电流再充4到六小时即可。

6,汽车蓄电池电压在多少为饱和低于多少难启动

您好: 这个饱和程度的话一般用万用表是测不出来的,需要专用的工具。电瓶的大小不同,测出的数据也不一样。 启动的话可以用启动电压测试仪测一下,一般不低于9.2V基本上没有问题。 希望可以帮助到您,不明白的可以登陆百车宝问答找我。
12V蓄电池 充电达到14.0~14.5V时饱和, 低于11V就可能会启动困难。⒈、蓄电池从出厂到安装使用,电池容量会受到不同程度的损失,在投入使用前应进行充电。如果蓄电池储存期不超过一年,在恒压2.27V/只的条件下充电5天。如果蓄电池储存期为1~2年,在恒压2.33V/只条件下充电5天。2、蓄电池浮充使用时,应保证每个单体电池的浮充电压值为2.25~2.30V,如果浮充电压高于或低于这一范围,则将会减少电池容量或寿命。3、当蓄电池浮充运行时,蓄电池单体电池电压不应低于2.20V,如单体电压低于2.20V,则需进行均衡充电。均衡充电的方法为:充电电压2.35V/只,充电时间12小时。
12V蓄电池 充电达到14.0~14.5V时饱和, 低于11V就可能会启动困难。铅酸蓄电池使用与注意事项⒈ 蓄电池荷电出厂,从出厂到安装使用,电池容量会受到不同程度的损失,若时间较长,在投入使用前应进行补充充电。如果蓄电池储存期不超过一年,在恒压2.27V/只的条件下充电5天。如果蓄电池储存期为1~2年,在恒压2.33V/只条件下充电5天。⒉蓄电池浮充使用时,应保证每个单体电池的浮充电压值为2.25~2.30V,如果浮充电压高于或低于这一范围,则将会减少电池容量或寿命。⒊当蓄电池浮充运行时,蓄电池单体电池电压不应低于2.20V,如单体电压低于2.20V,则需进行均衡充电。均衡充电的方法为:充电电压2.35V/只,充电时间12小时。⒋蓄电池循环使用时,在放电后采用恒压限流充电。充电电压为2.35~2.45V/只,最大电流不大于0.25C10 具体充电方法为:先用不大于上述最大电流值的电流进行恒流充电,待充电到单体平均电 压升到2.35~2.45V时改用平均单体电压为2.35~2.45V恒压充电,直到充电结束。
汽车匹配大多为12V电瓶,饱和状态下电压在14~14.5V之间,启动引擎动力强劲;当电瓶缺电欠压低于10.5V时,启动引擎就比较困难了,这时电瓶需要充电维护。
新铅酸蓄电池满电电压在12.9V,使用一段时间后满电电压会大于13V有些会大于13.4V。12v电池低电压保护值为10.5V。容量放完时亏电的 开路 电压在11.82V左右。恒流充电满电时端电压会达到16-17V,恒压充电控制在析气电压以下14.4V。
12V蓄电池 充电达到14.0~14.5V时饱和, 低于11V就可能会启动困难。铅酸蓄电池使用与注意事项⒈ 蓄电池荷电出厂,从出厂到安装使用,电池容量会受到不同程度的损失,若时间较长,在投入使用前应进行补充充电。如果蓄电池储存期不超过一年,在恒压2.27V/只的条件下充电5天。如果蓄电池储存期为1~2年,在恒压2.33V/只条件下充电5天。⒉蓄电池浮充使用时,应保证每个单体电池的浮充电压值为2.25~2.30V,如果浮充电压高于或低于这一范围,则将会减少电池容量或寿命

7,对电池荷电状态估计的几种方法

正确估计蓄电池的SOC,就能够在实现整车能量管理时,避免对电动汽车蓄电池造成损害,合理利用蓄电池提供的电能,提高电池的利用率,延长电池组的使用寿命。SOC估计有其特殊性,温度不同、倍率不同、SOC点不同,充放电效率也不同;电池放电倍率越大,放出电量越少;电池工作的温度过高或过低,可用容量降低;由于有老化和自放电因素的存在,SOC值需要不断修正。 1.放电实验法 放电实验法是最可靠的SOC估计方法,采用恒定电流进行连续放电,放电电流与时间的乘积即为剩余电量。放电实验法在实验室中经常使用,适用于所有电池。但它有两个显著缺点:一是需要大量时间;二是电池进行的工作要被迫中断。放电实验法不适合行驶中的电动汽车,可用于电动汽车电池的检修。 2.安时计量法 安时计量法是最常用的SOC估计方法。如果充放电起始状态为SOCO,那么当前状态的SOC为 (5-3) 式中,CN为额定容量;I为电池电流;η为充放电效率,不是常数。 安时计量法应用中的问题:电流测量不准,将造成SOC计算误差,长期积累,误差越来越大;要考虑电池充放电效率;在高温状态和电流波动剧烈的情况下,误差较大。电流测量可通过使用高性能电流传感器解决,但成本增加。解决电池充放电效率要通过事前大量实验,建立电池充放电效率经验公式。安时计量法可用于所有电动汽车电池,若电流测量准确,有足够的估计起始状态的数据.则它就是一种简单、可靠的SOC估计方法。 3.开路电压法 电池的开路电压在数值上接近电池电动势。电池电动势是电解液浓度的函数,电解液密度随电池放电成比例降低,用开路电压可估计SOC。镍氢电池和锂离子电池的开路电压与SOC关系的线性度不如铅蓄电池好,但根据其对应关系也可以估计SOC,尤其在充电初期和末期效果较好。 开路电压法的显著缺点是需要电池长时静置,以达到电压稳定。电池状态从工作恢复到稳定,需要几个小时甚至十几个小时,这给测量造成困难;静置时间如何确定也是一个问题,所以该方法单独使用只适于电动汽车驻车状态。开路电压法在充电初期和末期SOC估计效果好,常与安时计量法结合使用。 4.负载电压法 电池放电开始瞬间,电压迅速从开路电压状态进入负载电压状态,在电池负载电流保持不变时,负载电压随SOC变化的规律与开路电压随SOC的变化规律相似。 负载电压法的优点:能够实时估计电池组的SOC,尤其在恒流放电时,具有较好的效果。在实际应用中,剧烈波动的电池电压给负载电压法应用带来困难。解决该问题,要储存大量电压数据,建立动态负载电压和SOC的数学模型。负载电压法很少应用到实车上,但常用来作为电池充放电截止的判据。 5.内阻法 电池内阻有交流内阻(impedance,常称交流阻抗)和直流内阻(resistance)之分,它们都与SOC有密切关系。电池交流阻抗是电池电压与电流之间的传递函数,是一个复数变量,表示电池对交流电的反抗能力,要用交流阻抗仪来测量。电池交流阻抗受温度影响大,是在电池处于静置后的开路状态还是在电池充放电过程中进行交流阻抗测量,存在争议,所以很少用于实车上。直流内阻表示电池对直流电的反抗能力,等于在同一很短的时间段内,电池电压变化量与电流变化量的比值。在实际测量中,将电池从开路状态开始恒流充电或放电,相同时间内负载电压和开路电压的差值除以电流值就是直流内阻。铅蓄电池在放电后期,直流内阻明显增大,可用来估计电池SOC;镍氢电池和锂离子电池直流内阻变化规律与铅蓄电池不同,应用较少。直流内阻的大小受计算时间段影响,若时间段短于10ms,只有欧姆内阻能够检测到;若时间段较长,内阻将变得复杂。准确测量单体电池内阻比较困难,这是直流内阻法的缺点。内阻法适用于放电后期电动汽车电池SOC的估计,可与安时计量法组合使用。 6.线性模型法 C.Ehret等人提出用线性模型法估计电池SOC,该方法是根据SOC变化量、电流、电压和上一个时间点SOC值计算,建立的线性方程为 (5-4) (5-5) 式中,SOC(i)为当前时刻的SOC值;SOC(i-1)为当前一时刻的SOC值;△SOC(i)为SOC的变化量;U和I为当前时刻的电压与电流。β0、β1、β2、β3为根据参考数据,利用最小二乘法拟合得到的系数,没有具体的物理含义。上述模型适用于低电流、SOC缓变的情况,对测量误差和错误的初始条件,有很高的鲁棒性。线性模型理论上可应用于各种类型和在不同老化阶段的电池,目前只查到在铅蓄电池上的应用,在其他电池上的适用性及变电流情况的估计效果要进一步研究。 7.神经网络法 电池是高度非线性的系统,在它充放电过程中很难建立准确的数学模型。神经网络具有非线性的基本特性,具有并行结构和学习能力,对于外部激励,能给出相应的输出,能够模拟电池动态特性,来估计SOC。估计电池SOC常采用三层典型神经网络率:输入、输出层神经元个数由实际问题的需要来确定,一般为线性函数;中间层神经元个数取决于问题的复杂程度及分析精度。估计电动汽车电池SOC,常用的输入变量有电压、电流、累积放出电量、温度、内阻、环境温度等。神经网络输入变量的选择是否合适,变量数量是否恰当,直接影响模型的准确性和计算量。神经网络法适用于各种电池,缺点是需要大量的参考数据进行训练,估计误差受训练数据和训练方法的影响很大。 8.卡尔曼滤波法 卡尔曼滤波理论的核心思想,是对动力系统的状态做出最小方差意义上的最优估计。应用于电池SOC估计,电池被看成动力系统,SOC是系统的一个内部状态。估计SOC算法的核心,是一套包括SOC估计值和反映估计误差的、协方差矩阵的递归方程,协方差矩阵用来给出估计误差范围。该方法 适用于各种电池,与其他方法相比,尤SOC于电流波动比较剧烈的混合动力电动汽车电池SOC的估计,它不仅给出了SOC的估计值,还给出了SOC的估计误差。 对各种估算方法的优缺点、适用场合进行比较分析,比较分析结果见表5-5。

文章TAG:蓄电池荷电状态要达到多少蓄电池  电池  荷电  
下一篇