本文目录一览

1,数学竞赛题求解尽力就好不用全做出来一题也好思路也好需

第一题等于60

数学竞赛题求解尽力就好不用全做出来一题也好思路也好需

2,2代地平线r2款摩托跑车多少钱

6500左右 不同配置不同 R2 好像是新陵在做

2代地平线r2款摩托跑车多少钱

3,怎么开QQ紫钻

BC、 去 www.99193.com网站不就得勒、 那里狠多诶、
10块一个月。。120一年。。
10QB一个月。
点下你Q 图案 就有砖的地方慢慢找就行了
http://r2.qq.com/vip/ 10元一个月,

怎么开QQ紫钻

4,BCstream r2这板子怎么样

  可以选择搭载了第六代智能英特尔酷睿处理器的产品,产品性能全面升级,采用全新一代架构,内置新一代图形处理核心,基于业界首屈一指的14纳米制程技术,更强大的芯,CPU性能提升达17%1,图形能力提升最高达41%2;更高效的芯,高达80%3的功耗

5,需要数学的字母公式

长方形周长面积=2(a+b) 长方体表面积体积=2(ab+ac+bc) 正方形周长面积 = 4a 正房体表面积= 6a^2 正房体体积 = a^3 三角形面积 =(1/2)a*h=二分之一底乘高 平行四边形面积 = a*h=底乘高 梯形面积 =(a+b)*h*(1/2) 圆周长=2pai*r 圆面积 =pai*r^2 圆柱表面积= 2pai*r*h+2(pai*r^2) 圆柱体积 =pai*r^2*h 圆锥体积 = (2/3)*pai*r^2*h 叶(扇)型面积= (n/360)*pai*R^2

6,长城汽车欧拉r2多少钱

2019年8月31日欧拉ORA旗下首款车型iQ于成都车展上市补贴后售价为8.98万~10.58万元:1、欧拉R2的部分参数信息:整车整备质量为1010Kg驱动电机的最大功率为35kW搭载来自宁德时代的三元锂电池电池容量33kWh续驶里程360Km。新车预计将于今年下半年投放市场;2、欧拉R2定位为微型车车身尺寸为3625×1660×1530mm轴距2490mm车长和轴距都略高于欧拉R1比同级别竞争对手尺寸以更大;3、动力方面R2采用的是三元锂电池续航里程为305km尽管不及R1的351km但对比奇瑞eQ而言有很大优势。需要指出的是欧拉R2和R1均基于长城汽车的ME平台打造该平台是长城为欧拉打造的专属纯电动平台。

7,矩阵的一个问题

此矩阵可逆 (不知道你说的硬算是什么意思 直接化简一点不费时间 此矩阵的秩为4 满秩矩阵所以该矩阵可逆)第2、3、4行分别减去第1行得(以下用r表示行)1 1 1 10 1 2 30 3 8 150 7 26 63r3-3*r2,r4-7*r2得1 1 1 1 0 1 2 3 0 0 2 6 0 0 12 42 r4-6*r3得1 1 1 10 1 2 30 0 2 60 0 0 6化上三角行列式 此行列式秩r=4 可逆。
是解决线性规划的好方法 矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既方便,又直观。例如对于方程组: a1x+b1y+c1z=d1 a2x+b2y+c2z=d2 a3x+b3y+c3z=d3 来说,我们可以构成两个矩阵: a1b1c1a1b1c1d1 a2b2c2a2b2c2d2 a3b3c3a3b3c3d3 因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。 数学上,一个m×n矩阵乃一m行n列的矩形阵列。矩阵由数组成,或更一般的,由某环中元素组成。 定义和相关符号 以下是一个 4 × 3 矩阵: 某矩阵 A 的第 i 行第 j 列,或 i,j位,通常记为 A[i,j] 或 Ai,j。在上述例子中 A[2,3]=7。 在C语言中,亦以 A[i][j] 表达。(值得注意的是,与一般矩阵的算法不同,在C中,"行"和"列"都是从0开始算起的) 此外 A = (aij),意为 A[i,j] = aij 对于所有 i 及 j,常见于数学著作中。 一般环上构作的矩阵 给出一环 R,M(m,n, R) 是所有由 R 中元素排成的 m× n 矩阵的集合。若 m=n,则通常记以 M(n,R)。这些矩阵可加可乘 (请看下面),故 M(n,R) 本身是一个环,而此环与左 R 模 Rn 的自同态环同构。 若 R 可置换, 则 M(n, R) 为一带单位元的 R-代数。其上可以莱布尼茨公式定义 行列式:一个矩阵可逆当且仅当其行列式在 R 内可逆。 在维基百科内,除特别指出,一个矩阵多是实数矩阵或虚数矩阵。 分块矩阵 分块矩阵 是指一个大矩阵分割成“矩阵的矩阵”。举例,以下的矩阵可分割成 4 个 2×2 的矩阵。 此法可用于简化运算,简化数学证明,以及一些电脑应用如VLSI芯片设计等。 对称矩阵 对称矩阵是相对其主对角线(由左上至右下)对称, 即是 ai,j=aj,i。 埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。 特普利茨矩阵在任意对角线上所有元素相对, 是 ai,j=ai+1,j+1。 随机矩阵所有列都是概率向量, 用于马尔可夫链。 矩阵运算 给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。举例: 另类加法可见于矩阵加法. 若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如 这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn. 若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中 (AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。 例如 此乘法有如下性质: (AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律"). (A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。 C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。 要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。 对其他特殊乘法,见矩阵乘法。 线性变换,秩,转置 矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系: 以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x ∈ Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。 矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。 m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性: (A + B)tr = Atr + Btr,(AB)tr = BtrAtr。

8,高一数学必修二知识点网络

高中数学必修2知识点 一、直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。当 时, 。当 时, ;当 时, 不存在。 ②过两点的直线的斜率公式: 注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式: 直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 ②斜截式: ,直线斜率为k,直线在y轴上的截距为b ③两点式: ( )直线两点 , ④截矩式: 其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。 ⑤一般式: (A,B不全为0) 注意:○1各式的适用范围 ○2特殊的方程如:平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数); (4)直线系方程:即具有某一共同性质的直线 (一)平行直线系 平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数) (二)过定点的直线系 (ⅰ)斜率为k的直线系: ,直线过定点 ; (ⅱ)过两条直线 , 的交点的直线系方程为 ( 为参数),其中直线 不在直线系中。 (5)两直线平行与垂直 当 , 时, ; 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (6)两条直线的交点 相交 交点坐标即方程组的一组解。方程组无解 ; 方程组有无数解 与 重合 (7)两点间距离公式:设 是平面直角坐标系中的两个点,则 (8)点到直线距离公式:一点 到直线 的距离 (9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。 二、圆的方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2、圆的方程 (1)标准方程 ,圆心 ,半径为r; (2)一般方程 当 时,方程表示圆,此时圆心为, 半径为 当 时,表示一个点; 当 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件, 若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断: (1)设直线 ,圆 圆心 到l的距离为 则有 (2)设直线 ,圆 ,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为 ,则有 ; ; 注:如圆心的位置在原点,可使用公式 去解直线与圆相切的问题,其中 表示切点坐标,r表示半径。 (3)过圆上一点的切线方程: ①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为 (课本命题). ②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广). 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 设圆 , 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 当 时两圆外离,此时有公切线四条; 当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当 时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当 时,两圆内切,连心线经过切点,只有一条公切线; 当 时,两圆内含; 当 时,为同心圆。 三、立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱 或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;    俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线) (3)柱体、锥体、台体的体积公式 (4)球体的表面积和体积公式:V = ; S = 5、空间点、直线、平面的位置关系 (1)平面 ① 平面的概念: A.描述性说明; B.平面是无限伸展的; ② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。 ③ 点与平面的关系:点A在平面 内,记作 ;点 不在平面 内,记作 点与直线的关系:点A的直线l上,记作:A∈l; 点A在直线l外,记作A l; 直线与平面的关系:直线l在平面α内,记作l α;直线l不在平面α内,记作l α。 (2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线) 应用:检验桌面是否平; 判断直线是否在平面内 。 用符号语言表示公理1: (3)公理2:经过不在同一条直线上的三点,有且只有一个平面。 推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。 公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 (4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α和β相交,交线是a,记作α∩β=a。 符号语言: 公理3的作用:①它是判定两个平面相交的方法。 ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。 ③它可以判断点在直线上,即证若干个点共线的重要依据。 (5)公理4:平行于同一条直线的两条直线互相平行 (6)空间直线与直线之间的位置关系 ① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。 ③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 ④ 异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a∥a,b∥b,则把直线a和b所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。 说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理 (2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。 (3)求异面直线所成角步骤: A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角 (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。 (8)空间直线与平面之间的位置关系 直线在平面内——有无数个公共点.

文章TAG:bc多少  数学  数学竞赛  
下一篇