本文目录一览

1,超音波技术一般是指频率超过多少范围的声波

超音波技术一般是指频率超过20Hz---20KHz范围的声波,通常把高于20KHz的叫为超声波;而于低20Hz的叫作次声波。
你好!超音波是指频率超过2万赫兹的波。我的回答你还满意吗~~
一般频率大于20000HZ

超音波技术一般是指频率超过多少范围的声波

2,超声波波形有哪几种

直线和波浪二种
目前,医生们应用的超声诊断方法有不同的形式,可分为A型、B型、M型及D型四大类。  A型:是以波形来显示组织特征的方法,主要用于测量器官的径线,以判定其大小。可用来鉴别病变组织的一些物理特性,如实质性、液体或是气体是否存在等。  B型:用平面图形的形式来显示被探查组织的具体情况。检查时,首先将人体界面的反射信号转变为强弱不同的光点,这些光点可通过荧光屏显现出来,这种方法直观性好,重复性强,可供前后对比,所以广泛用于妇产科、泌尿、消化及心血管等系统疾病的诊断。  M型:是用于观察活动界面时间变化的一种方法。最适用于检查心脏的活动情况,其曲线的动态改变称为超声心动图,可以用来观察心脏各层结构的位置、活动状态、结构的状况等,多用于辅助心脏及大血管疫病的诊断。  D型:是专门用来检测血液流动和器官活动的一种超声诊断方法,又称为多普勒超声诊断法。可确定血管是否通畅、管腔有否狭窄、闭塞以及病变部位。新一代的D型超声波还能定量地测定管腔内血液的流量。近几年来科学家又发展了彩色编码多普勒系统,可在超声心动图解剖标志的指示下,以不同颜色显示血流的方向,色泽的深浅代表血流的流速。现在还有立体超声显象、超声CT、超声内窥镜等超声技术不断涌现出来,并且还可以与其他检查仪器结合使用,使疾病的诊断准确率大大提高。超声波技术正在医学界发挥着巨大的作用,随着科学的进步,它将更加完善,将更好地造福于人类。超声波具有如下特性:   1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。   2) 超声波可传递很强的能量。   3) 超声波会产生反射、干涉、叠加和共振现象。   4) 超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。希望我的回答能让你满意。

超声波波形有哪几种

3,常用的影像学检查技术有哪些c

常用的影像学检查技术有:  一、X光检查  传统地讲,X光检查就是透视和拍片。  1、X光透视  有胸部透视、腹部透视以及透环。目前为患者做透视检查主要是为了动态地观察其心脏、大血管,以及病灶与肺部之间的关系。此外,想为患者从体内取出异物或为骨折患者做复位治疗时,也可以借助于X线透视检查。  2、X线拍片  对患者从头部到脚部的骨骼进行拍摄,从而可判断其是否有骨折、炎症、结核、肿瘤等。由于x线拍片检查缺乏动态观察的优势,因此,对拍过X线片的患者还要定期进行复查。  二、CT检查  CT检查方法近年有许多进展,包括多排探测器的使用和计算机后处理软件的升级。在CT检查中,不经静脉给予造影利的CT扫描称为平扫。一般正常盯组织和病变组织间CT值至少相差10Hu才有可能明确显示肝内病灶,否则应采用增强的方法进行检查。  1)平扫  扫描范围自膈顶至肝下缘,包括整个肝脏,层厚10mm,对小的病灶可加薄层扫描,层厚2~5mm无间隔连续扫描,认真调节窗宽、窗位,增加对比度,以利于病灶的检出。  2)增强检查  从静脉(或动脉)内在人造影剂来增加上常肝组织与病变组织之间的密度差,叫做增强检查 它可以发现平扫时未发现病变,区分肝内、外血管结构与非血管结构根据病生强化的特点做定诊断及鉴别诊断。  三、超声波检查  超声波检查分为B型超声波检查及彩色多普勒超声波检查。  1、B型超声波检查  B型超声波检查是超声波检查的一种,是一种非手术的诊断检查,是一门新兴的学科,已成为现代临床医学中不可缺少的诊断方法。价格比较便宜,又无不良反应,可反复检查。B型超声波检查在肝病中具有较高的诊断价值,已成为临床上检查肝硬化最常用的方法。  2、彩色多普勒超声波检查  彩色多普勒超声检查主要是在检查过程中,应用了脉冲多普勒技术、连续波多普勒技术、高脉冲重复频率多普勒、彩色多普勒血流显像、功率型彩色血流成像、组织多普勒显像等彩色多普勒超声技术,把这些信息和相关的黑白超声二维解剖结构信息相结合后,来判定被检查组织器官是否有病变、病变的程度以及病变的质。
我是来看评论的

常用的影像学检查技术有哪些c

4,夜晚的实验 超声波除了为飞机轮船导航寻找地下的矿藏外你还知

长的超声波广泛地应用在多种技术中.超声波有两个特点,一个是能量大,一个是沿直线传播.它的应用就是按照这两个特点展开的. 在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气的湿度.这就是超声波加湿器的原理. 对于咽喉炎、气管炎等疾病,药力很难达到患病的部位.利用加湿器的原理,把药液雾化,让病人吸入,能够增进疗效. 利用超声波的巨大能量还可以把人体内的结石击碎. 金属零件、玻璃和陶瓷制品的除垢是件麻烦事.如果在放有这些物品的清洗液中通入超声波,清洗液的剧烈振动冲击物品上的污垢,能够很快清洗干净. 超声波基本上是沿直线传播的,可以定向发射.如果渔船载有水下超声波发生器,它旋转着向各个方向发射超声波,超声波遇到鱼群会反射回来,渔船探测到反射波就知道鱼群的位置了.这种仪器叫做声纳.声纳也可以用来探测水中的暗礁、敌人的潜艇,测量海水的深度. 根据同样的道理也可以用超声波探测金属、陶瓷混凝土制品,甚至水库大坝,检查内部是否有气泡、空洞和裂纹. 人体各个内脏的表面对超声波的反射能力是不同的,健康内脏和病变内脏的反射能力也不一样.平常说的“B超”就是根据内脏反射的超声波进行造影,帮助医生分析体内的病变. 有趣的是,很多动物都有完善的发射和接收超声波的器官.以昆虫为食的编幅,视觉很差,飞行中不断发出超声波的脉冲,依靠昆虫身体的反射波来发现食物.海豚也有完善的“声纳”系统,使它能在混浊的水中准确地确定远处小鱼的位置.现代的无线电定位器——雷达,质量有几十、几百、几千千克,蝙蝠的超声定位系统只有几分之一克,而在一些重要性能上,如确定目标方位的精确度、抗干扰的能力等都远优于现代的无线电定位器.深入研究动物身上各种器官的功能和构造,将获得的知识用来改进现有的设备和创制新的设备,这是近几十年来发展起来的一门新学科,叫做仿生学. 由于超声波清洗速度快、质量好,又能大大降低环境污染,因此,超声波清洗技术正在越来越多的工业部门中得到应用。更多的关于:超声波在电子行业的应用、超声波在印染行业的应用、超声波清洗技术的应用、超声波焊接……短的超声波现在应用范围很广了,可以运用到焊接,切割,医疗,清洗等。。
答: 超声探伤(检测),超声清洗,,超声体外碎石,B超,超声打孔,超声雾化,超声波凝聚……

5,超声波的知识

不知道和不和你胃口,你看看:超声检测 1、什么是无损探伤/无损检测? 答:(1)无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。(2)无损检测:Nondestructive Testing(缩写 NDT) 2、常用的探伤方法有哪些? 答:无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:常规无损检测方法有:-超声检测 Ultrasonic Testing(缩写 UT); -射线检测 Radiographic Testing(缩写 RT); -磁粉检测 Magnetic particle Testing(缩写 MT); -渗透检验 Penetrant Testing (缩写 PT); -涡流检测Eddy current Testing(缩写 ET); 非常规无损检测技术有: -声发射Acoustic Emission(缩写 AE); -泄漏检测Leak Testing(缩写 UT); -光全息照相Optical Holography; -红外热成象Infrared Thermography; -微波检测 Microwave Testing 3、超声波探伤的基本原理是什么? 答:  超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。   目前便携式的脉冲反射式超声波探伤仪大部分是A扫描方式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射(见图1 ),反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。参考资料: http://bbs.hcbbs.com/viewthread.php?tid=70804
超声波

6,超声波的应用举例

1、超声检验超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。超声成像是利用超声波呈现不透明物内部形象的技术。2、超声处理利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等。3、超声波清洗清洗的超声波应用原理是由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质, 清洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡(空化核)在声场的作用下振动。4、超声波加湿器理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在中国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度,这就是超声波加湿器的原理。5、超声除螨科研人员发现,螨虫的听觉神经系统很脆弱,对特定频率的超声非常敏感,针对螨虫的这种生理特性,已有科技公司的研究人员开发出了超声波除螨仪。这种新型的除螨产品采用现代微电子技术手段,直接用特殊频率的超声作用于螨虫的听觉神经系统,使其生理系统紊乱,烦躁不安,食欲不振,最终奄奄一息逐渐死亡。
去百度文库,查看完整内容>内容来自用户:韩昌文超声波的应用频率高于人的听觉上限(约为20000Hz)的声波,称为超声波。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声波具有许多奇异特性:传播特性——超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性——当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功,声波功率就是表示声波作功快慢的物理量。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用——当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。(2)
1.比如你常见的B超,就是超声波在医学上的应用,根据人体不同位置反射回来的超声能量的不同来探测体内结构。2.超声在工业上的应用。比如超声清洗机,超声的振动频率很大,使得水(或油)产生很多微小气泡,这些气泡可以将污渍分离下来。由于超声可以探知物体内部结构,所以也用于超声无损检测。超声还可以用来测流量、测液位、分界面定位等。3.超声的民用。如超声捕鱼,测距。利用的是超声传出去以后经历了多少时间反射回来以及反射回来的超声波的能量分布来探测鱼群的大小和距离。依此原理也可以探知海底的地貌。4.超声的军用。如人类学习蝙蝠而创造的雷达。。

7,声波有几种类型

声波的类型 (1) 纵波 媒质中质点沿传播方向运动的波。 (2) 横波 媒质中的质点都垂直于传播方向而运动的波。 (3) 表面波 沿媒质表面层传播,幅值随深度迅速减弱的波。 频率、超声波、次声波 其他关于声波的参考资料: 声学是一门古老的学科,大约从17世纪初分析物体的振动开始,直到19世纪末,还只能用人耳接收声波。1877年出版了瑞利的《声学理论》,该书对经典声学的内容进行了总结。20世纪初,贝尔发明了用于电话机的碳粒传声器,人们首次把声波转换为电信号,从而使声学研究进入了一个新的阶段。电子学的发展,大大地促进了声学研究,从此,人们能够精确测量、观察和研究各种频率、波形和强度的声波,从而奠定了近代声学的基础。声学与人们日常生活密切相关。例如,改进厅堂的音质和放声系统的高保真度;测量并控制噪声水平,以改善人们的生活环境等。由于数字技术和大规模集成电路的发展,微处理机进入了声学研究与应用领域,使声学研究手段和方法的准确性和速度都得到提高。随之而出现一批新的声学测量技术和相应的仪器设备。例如,实时频率分析、声强测量、声源鉴别、快速傅里叶变换、相关分析等。 随着科学技术的发展,近代声学同时也得到了迅速发展,在工业、农业、国防、交通、卫生、教育、科学研究、文化生活以及社会等各个方面获得了广泛的应用,形成了许多新兴的边缘学科。 声学是研究各种媒质中声波的产生、传播、接收和作用等问题的一门学科。传播声波的媒质有三种不同状态,一般称为气体、液体和固体,因此形成相应的分支学科,分别称为空气声学、水声学和超声学,其中空气声学涉及人们的听觉,因此,与人们的文化生活和社会活动关系非常密切。由于声学在不同的媒质及其不同状态下传播时,有着不同的传播特性,利用这些特性可以研究和测量各种媒质的物理性质和状态。例如,弹性模量、硬度、粘度、温度、厚度、料位等。特别是频率较高的超声波与物质内部某些微观结构有相互作用,如超声波与金属、半导体、超导体中的电子等相互作用,故可用于物质结构的研究。 由于超声波在固体和液体中传播时衰减小,因此传播距离相应要远些,一般称为穿透性强;同时超声波频率高,波长短,因此固体中辐射的声场具有方向性强,并且传播过程中遇到障碍物时能够反射等特点,可以用于探测金属和非金属材料内部的缺陷位置、大小和性质。这就是应用相当广泛的无损检测技术之一——超声检测。同样原理推广应用于人体上,可以从体外来检查体内的某些疾病、器官动态或生理变化。 下面简单介绍声学中一般概念和传播特性。 1.次声波、声波和超声波 次声波、声波和超声波都是在弹性媒质中传播的机械波。它们的区别主要在于频率不同。 (1) 声波 人们把能引起听觉的机械波称为声波(音频)。频率在20~20000Hz之间。 (2) 次声波 频率低于20Hz的机械波称为次声波。 (3) 超声波 频率高于20000Hz的机械波称为超声波。 2.声波的类型 (1) 纵波 媒质中质点沿传播方向运动的波。 (2) 横波 媒质中的质点都垂直于传播方向而运动的波。 (3) 表面波 沿媒质表面层传播,幅值随深度迅速减弱的波。 3.平面波、柱面波、球面波 (1) 平面波 波阵面为平面且与传播方向垂直的波。 (2) 柱面波 波阵面为同轴柱面的波。 (3) 球面波 波阵面为同心球面的波。

文章TAG:超声波技术有多少种超声波  技术  多少  
下一篇