本文目录一览

1,京基百纳有几层

京基100(KK100),原名京基金融中心(KingKey Financial Center),楼高441.8米,共100层
98层
京基100是现深圳最高的楼。京基百纳是京基100的裙楼,是一个商业中心。

京基百纳有几层

2,MLCC为什么要镀锡

为了便于焊接。

MLCC为什么要镀锡

3,MLCC电容器容量在多少皮法以上算高容

Mlcc,电容器容量在多少?批发以上算是高的,正常的数值高出来就是多的
你好!Ml信息电容器容量的多少平方以上算是高荣,我认为在两百平方以上她就顺着刚融了,因为这个东西它是有节点算着的。如有疑问,请追问。
Mlcc电器容器,容量应该在5批法以上算是包容
可能是功率不一样大小容量也不相同的。
mlCC电容器容量,依法组织算高嘛不算高榕他不算是不算是高中。

MLCC电容器容量在多少皮法以上算高容

4,瓷片电容MLCC电容个独石电容是不是一回事

瓷片电容、MLCC电容、独石电容,三者既有联系,又有区别。瓷片电容,用陶瓷粉模压成型,然后烧结而成。(陶瓷又分I类瓷,II类瓷,III类瓷)单片瓷,单层结构,一般纽扣大小,带两根引脚。正因为单层结构,瓷片电容器,一般容量不大,但电压高。MLCC电容,多层结构,往往一个MLCC内部多达几十层,甚至更多,其中,每一单层都相当于一个电容,几十层,就相当于几十个电容器并联,所以MLCC容量做很大,但电压不高。一般都是表面贴封装。至于独石电容,完全是MLCC的一个变种,在MLCC上焊接两根引线,用环氧树脂封装。

5,mlcc 独石电容可以当安规电容用吗

瓷片电容、mlcc电容、独石电容,三者既有联系,又有区别。瓷片电容,用陶瓷粉模压成型,然后烧结而成。(陶瓷又分i类瓷,ii类瓷,iii类瓷)单片瓷,单层结构,一般纽扣大小,带两根引脚。正因为单层结构,瓷片电容器,一般容量不大,但电压高。mlcc电容,多层结构,往往一个mlcc内部多达几十层,甚至更多,其中,每一单层都相当于一个电容,几十层,就相当于几十个电容器并联,所以mlcc容量做很大,但电压不高。一般都是表面贴封装。至于独石电容,完全是mlcc的一个变种,在mlcc上焊接两根引线,用环氧树脂封装。
不能,耐压不够,安规电容有完善的标准,该用啥就用啥。

6,怎幺焊接贴片电容

MLCC(片状多层陶瓷电容)现在已经成为了电子电路最常用的元件之一。MLCC表面看来,非常简单,可是,很多情况下,设计工程师或生产、工艺人员对MLCC的认识却有不足的地方。有些公司在MLCC的应用上也会有一些误区,以为MLCC是很简单的元件,所以工艺要求不高。其实,MLCC是很脆弱的元件,应用时一定要注意。-以下谈谈MLCC应用上的一些问题和注意事项。-随着技术的不断发展,贴片电容MLCC现在已可以做到几百层甚至上千层了,每层是微米级的厚度。所以稍微有点形变就容易使其产生裂纹。另外同样材质、尺寸和耐压下的贴片电容MLCC,容量越高,层数就越多,每层也越薄,于是越容易断裂。另外一个方面是,相同材质、容量和耐压时,尺寸小的电容要求每层介质更薄,导致更容易断裂。裂纹的危害是漏电,严重时引起内部层间错位短路等安全问题。而且裂纹有一个很麻烦的问题是,有时比较隐蔽,在电子设备出厂检验时可能发现不了,到了客户端才正式暴露出来。所以防止贴片电容MLCC产生裂纹意义重大。当贴片电容MLCC受到温度冲击时,容易从焊端开始产生裂纹。在这点上,小尺寸电容比大尺寸电容相对来说会好一点,其原理就是大尺寸的电容导热没这么快到达整个电容,于是电容本体的不同点的温差大,所以膨胀大小不同,从而产生应力。这个道理和倒入开水时厚的玻璃杯比薄玻璃杯更容易破裂一样。另外,在贴片电容MLCC焊接过后的冷却过程中,贴片电容MLCC和PCB的膨胀系数不同,于是产生应力,导致裂纹。要避免这个问题,回流焊时需要有良好的焊接温度曲线。如果不用回流焊而用波峰焊,那么这种失效会大大增加。MLCC更是要避免用烙铁手工焊接的工艺。然而事情总是没有那么理想。烙铁手工焊接有时也不可避免。比如说,对于PCB外发加工的电子厂家,有的产品量特少,贴片外协厂家不愿意接这种单时,只能手工焊接;样品生产时,一般也是手工焊接;特殊情况返工或补焊时,必须手工焊接;修理工修理电容时,也是手工焊接。无法避免地要手工焊接MLCC时,就要非常重视焊接工艺。首先必须告知工艺和生产人员电容热失效问题,让其思想上高度重视这个问题。其次,必须由专门的熟练工人焊接。还要在焊接工艺上严格要求,比如必须用恒温烙铁,烙铁不超过 315°C(要防止生产工人图快而提高焊接温度),焊接时间不超过3秒选择合适的焊焊剂和锡膏,要先清洁焊盘,不可以使MLCC受到大的外力,注意焊接质量等等。最好的手工焊接是先让焊盘上锡,然后烙铁在焊盘上使锡融化,此时再把电容放上去,烙铁在整个过程中只接触焊盘不接触电容(可移动靠近),之后用类似方法(给焊盘上的镀锡垫层加热而不是直接给电容加热)焊另一头。机械应力也容易引起MLCC产生裂纹。由于电容是长方形的(和PCB平行的面),而且短的边是焊端,所以自然是长的那边受到力时容易出问题。于是,排板时要考虑受力方向。比如分板时的变形方向于电容的方向的关系。在生产过程中,凡是PCB可能产生较大形变的地方都尽量不要放电容。比如PCB定位铆接、单板测试时测试点机械接触等等都会产生形变。另外半成品PCB板不能直接叠放,等等。

7,常用的MLCC有哪些

MLCC是片式多层陶瓷电容器英文缩写.(Multi-layer ceramic capacitors)主要MLCC主要生产厂家:日本京瓷、村田、丸和、TDK;韩国三星;台湾达方、禾伸堂、国巨、华新科;大陆有名的则是宇阳、风华高科、三环。按照温度特性、材质、生产工艺。MLCC可以分成如下几种:NPO、COG、Y5V、Z5U、X7R、X5R等。NPO、COG温度特性平稳、容值小、价格高;Y5V、Z5U温度特性大、容值大、价格低;X7R、X5R则介于以上两种之间。按材料SIZE大小来分。大致可以分为 3225、3216、2012、1608、1005、0603、0402 数值越大。SIZE就更宽更厚。目前常用的最多为3225最小为0402。目前在便携产品中广泛应用的片式多层陶瓷电容器(MLCC)材料根据温度特性,主要可分为两大类:BME化的C0G产品和LOW ESR选材的X7R(X5R)产品。

8,测量一些大电容MLCC时为什么测量值会比较小

您好,测量电容器时,了解真实值、実效值和表示值之间的差异非常重要,智旭电子在这方面野深有研究,实际经验告诉我们:测量大电容值电容时,仪表上设定的电压等级不一定等于被测器件中传输的电压等级。真实值是电容器在没有寄生电感和电阻的理想元件时的值。実效值是元件实际和矢量的总和,与频率有关。表示值是测量设备显示的值,受制于测量精度。
瓷片电容、mlcc电容、独石电容,三者既有联系,又有区别。瓷片电容,用陶瓷粉模压成型,然后烧结而成。(陶瓷又分i类瓷,ii类瓷,iii类瓷)单片瓷,单层结构,一般纽扣大小,带两根引脚。正因为单层结构,瓷片电容器,一般容量不大,但电压高。mlcc电容,多层结构,往往一个mlcc内部多达几十层,甚至更多,其中,每一单层都相当于一个电容,几十层,就相当于几十个电容器并联,所以mlcc容量做很大,但电压不高。一般都是表面贴封装。至于独石电容,完全是mlcc的一个变种,在mlcc上焊接两根引线,用环氧树脂封装。

9,瓷片电容和陶瓷电容是不是一回事

瓷片电容外观只能是片状;陶瓷电容它的外形以片式居多,也有管形、圆形等形状。
瓷片电容、mlcc电容、独石电容,三者既有联系,又有区别。瓷片电容,用陶瓷粉模压成型,然后烧结而成。(陶瓷又分i类瓷,ii类瓷,iii类瓷)单片瓷,单层结构,一般纽扣大小,带两根引脚。正因为单层结构,瓷片电容器,一般容量不大,但电压高。mlcc电容,多层结构,往往一个mlcc内部多达几十层,甚至更多,其中,每一单层都相当于一个电容,几十层,就相当于几十个电容器并联,所以mlcc容量做很大,但电压不高。一般都是表面贴封装。至于独石电容,完全是mlcc的一个变种,在mlcc上焊接两根引线,用环氧树脂封装。
瓷片电容是指采用陶瓷为介质的片状结构电容,陶瓷电容是指采用陶瓷介质的电容统称,后者包含前者,陶瓷电容也有铁电陶瓷等类型之分。
瓷片是树脂绝缘瓷片两边喷涂银层,焊上引线构成,具有介质损耗小,高频适应性强的特点。陶瓷电容分两种,一种是在陶瓷上喷涂银层,的半可变电容器。一种是陶瓷材料的瓷管电容。同样适用高频电路。

10,交换机有几层啊每层分别有什么用

(一)二层交换 二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下: (1) 当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的; (2) 再去读取包头中的目的MAC地址,并在地址表中查找相应的端口; (3) 如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上; (4) 如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。 从二层交换机的工作原理可以推知以下三点: (1) 由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换; (2) 学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量; (3) 还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。 以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。 (二)路由技术 路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。工作原理是在路由器的内部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向那里走,如果能从路由表中找到数据包下一步往那里走,把链路层信息加上转发出去;如果不能知道下一步走向那里,则将此包丢弃,然后返回一个信息交给源地址。 路由技术实质上来说不过两种功能:决定最优路由和转发数据包。路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达目的路由器。而路由表的维护,也有两种不同的方式。一种是路由信息的更新,将部分或者全部的路由信息公布出去,路由器通过互相学习路由信息,就掌握了全网的拓扑结构,这一类的路由协议称为距离矢量路由协议;另一种是路由器将自己的链路状态信息进行广播,通过互相学习掌握全网的路由信息,进而计算出最佳的转发路径,这类路由协议称为链路状态路由协议。 由于路由器需要做大量的路径计算工作,一般处理器的工作能力直接决定其性能的优劣。当然这一判断还是对中低端路由器而言,因为高端路由器往往采用分布式处理系统体系设计。 (三)三层交换技术 近年来的对三层技术的宣传,耳朵都能起茧子,到处都在喊三层技术,有人说这是个非常新的技术,也有人说,三层交换嘛,不就是路由器和二层交换机的堆叠,也没有什么新的玩意,事实果真如此吗?下面先来通过一个简单的网络来看看三层交换机的工作过程。 组网比较简单 使用IP的设备A------------------------三层交换机------------------------使用IP的设备B比如A要给B发送数据,已知目的IP,那么A就用子网掩码取得网络地址,判断目的IP是否与自己在同一网段。 如果在同一网段,但不知道转发数据所需的MAC地址,A就发送一个ARP请求,B返回其MAC地址,A用此MAC封装数据包并发送给交换机,交换机起用二层交换模块,查找MAC地址表,将数据包转发到相应的端口。 如果目的IP地址显示不是同一网段的,那么A要实现和B的通讯,在流缓存条目中没有对应MAC地址条目,就将第一个正常数据包发送向一个缺省网关,这个缺省网关一般在操作系统中已经设好,对应第三层路由模块,所以可见对于不是同一子网的数据,最先在MAC表中放的是缺省网关的MAC地址;然后就由三层模块接收到此数据包,查询路由表以确定到达B的路由,将构造一个新的帧头,其中以缺省网关的MAC地址为源MAC地址,以主机B的MAC地址为目的MAC地址。通过一定的识别触发机制,确立主机A与B的MAC地址及转发端口的对应关系,并记录进流缓存条目表,以后的A到B的数据,就直接交由二层交换模块完成。这就通常所说的一次路由多次转发。 以上就是三层交换机工作过程的简单概括,可以看出三层交换的特点: 1)由硬件结合实现数据的高速转发。这就不是简单的二层交换机和路由器的叠加,三层路由模块直接叠加在二层交换的高速背板总线上,突破了传统路由器的接口速率限制,速率可达几十Gbit/s。算上背板带宽,这些是三层交换机性能的两个重要参数。 2)简洁的路由软件使路由过程简化。大部分的数据转发,除了必要的路由选择交由路由软件处理,都是又二层模块高速转发,路由软件大多都是经过处理的高效优化软件,并不是简单照搬路由器中的软件。 结论 二层交换机用于小型的局域网络。这个就不用多言了,在小型局域网中,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的解决方案。 路由器的优点在于接口类型丰富,支持的三层功能强大,路由能力强大,适合用于大型的网络间的路由,它的优势在于选择最佳路由,负荷分担,链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。 三层交换机的最重要的功能是加快大型局域网络内部的数据的快速转发,加入路由功能也是为这个目的服务的。如果把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。 一般来说,在内网数据流量大,要求快速转发响应的网络中,如全部由三层交换机来做这 个工作,会造成三层交换机负担过重,响应速度受影响,将网间的路由交由路由器去完成,充分发挥不同设备的优点,不失为一种好的组网策略,当然,前提是客户的腰包很鼓,不然就退而求其次,让三层交换机也兼为网际互连。 (四)四层交换 第四层交换的一个简单定义是:它是一种功能,它决定传输不仅仅依据MAC地址(第二层网 桥)或源/目标IP地址(第三层路由),而且依据TCP/UDP(第四层) 应用端口号。第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。 在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。 当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCP SYN包)发给服务器交换机。服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。 第四层交换的原理 OSI模型的第四层是传输层。传输层负责端对端通信,即在网络源和目标系统之间协调通信。在IP协议栈中这是TCP(一种传输协议)和UDP(用户数据包协议)所在的协议层。 在第四层中,TCP和UDP标题包含端口号(portnumber),它们可以唯一区分每个数据包包含哪些应用协议(例如HTTP、FTP等)。端点系统利用这种信息来区分包中的数据,尤其是端口号使一个接收端计算机系统能够确定它所收到的IP包类型,并把它交给合适的高层软件。端口号和设备IP地址的组合通常称作\"插口(socket)\"。 1和255之间的端口号被保留,他们称为\"熟知\"端口,也就是说,在所有主机TCP/I P协议栈实现中,这些端口号是相同的。除了\"熟知\"端口外,标准UNIX服务分配在256到1024端口范围,定制的应用一般在1024以上分配端口号。分配端口号的最近清单可以在RFc1700\"Assigned Numbers\"上找到。TCP/UDP端 口号提供的附加信息可以为网络交换机所利用,这是第4层交换的基础。 \"熟知\"端口号举例: 应用协议 端口号 FTP 20(数据) 21(控制) TELNET 23 SMTP 25 HTTP 80 NNTP 119 NNMP 16 162(SNMP traps) TCP/UDP端口号提供的附加信息可以为网络交换机所利用,这是第四层交换的基础。 具有第四层功能的交换机能够起到与服务器相连接的\"虚拟IP\"(VIP)前端的作用。 每台服务器和支持单一或通用应用的服务器组都配置一个VIP地址。这个VIP地址被发送出去并在域名系统上注册。在发出一个服务请求时,第四层交换机通过判定TCP开始,来识别一次会话的开始。然后它利用复杂的算法来确定处理这个请求的最佳服务器。一旦做出这种决定,交换机就将会话与一个具体的IP地址联系在一起,并用该服务器真正的IP地址来代替服务器上的VIP地址。

文章TAG:mlcc有多少层多少  京基百纳  百纳  
下一篇