1,步进电机驱动器刚接通电其UVW输出电压多少

步进电机一般三相的会是U/V/W,2相得一般都是A+ A- B+ B-步进电机启动电压是步进驱动器给的,像雷赛步进驱动器DM542,启动电压就是50V。

步进电机驱动器刚接通电其UVW输出电压多少

2,IGBT的开启电压一般是多大

IGBT的开启电压就是指门极(栅极)和源极(IGBT不称发射极)之间的电压Vgs,通常这个值在2~4V左右,也有的的需要6V左右,例如H40T120的Vgs就是5-6.5V 。

IGBT的开启电压一般是多大

3,目前市场上IGBT允许的最大电流和电压分别是多少

型号种类多多,电流有从十几安到数百安的,电压有几十V数千V的,难以一一列来。
igbt本身不允许反向电流。当前的“igbt模块”一般集成了反并联二极管,就是给反向电流提供通路的。附图是一单元igbt模块的电气原理图,看看就明白了。

目前市场上IGBT允许的最大电流和电压分别是多少

4,变频器模块触发电压是什么意思怎么测出现ER15的故障

变频器模块即IGBT,IGBT基极的驱动电压大多是18V以下的,不过给IGBT发出开关脉冲控制的芯片输出的电压是5V左右,一般在4.4V以上就可以了。 非专业人员请勿测试(高压700V),而且容易损坏变频器(要拆解后才能测)。危险 出现ER-15的故障要查该变频器手册,故障报警代码

5,请问IGBT的驱动为何要负电压如果负电压太低会有什么后果

负电压主要是为了确保关断IGBT,此外负电压还有一个好处就是防止米勒钳位效应,就是上管开通时产生的高di/dt 可能导致的下管误触发的情况,具体自己可以在文库里面搜索,文献很多
原因很简单。就是为了更可靠的关断IGBT。负电压不能低,GE间的偏置电压一般要求不超过正负20V。大多使用-7V左右
就是给门极到射极加负电压,一般叫做vge。通常驱动电路会产生一正一负两个电压,通过推挽电路控制输出正还是输出负

6,igbt驱动电路的要求

对于大功率IGBT,选择驱动电路基于以下的参数要求:器件关断偏置、门极电荷、耐固性和电源情况等。门极电路的正偏压VGE负偏压-VGE和门极电阻RG的大小,对IGBT的通态压降、开关时间、开关损耗、承受短路能力以及dv/dt电流等参数有不同程度的影响。门极驱动条件与器件特性的关系见表1。栅极正电压 的变化对IGBT的开通特性、负载短路能力和dVcE/dt电流有较大影响,而门极负偏压则对关断特性的影响比较大。在门极电路的设计中,还要注意开通特性、负载短路能力和由dVcE/dt 电流引起的误触发等问题(见表1)。表1 IGBT门极驱动条件与器件特性的关系由于IGBT的开关特性和安全工作区随着栅极驱动电路的变化而变化,因而驱动电路性能的好坏将直接影响IGBT能否正常工作。为使IGBT能可靠工作。IGBT对其驱动电路提出了以下要求。1)向IGBT提供适当的正向栅压。并且在IGBT导通后。栅极驱动电路提供给IGBT的驱动电压和电流要有足够的幅度,使IGBT的功率输出级总处于饱和状态。瞬时过载时,栅极驱动电路提供的驱动功率要足以保证IGBT不退出饱和区。IGBT导通后的管压降与所加栅源电压有关,在漏源电流一定的情况下,VGE越高,VDS傩就越低,器件的导通损耗就越小,这有利于充分发挥管子的工作能力。但是, VGE并非越高越好,一般不允许超过20 V,原因是一旦发生过流或短路,栅压越高,则电流幅值越高,IGBT损坏的可能性就越大。通常,综合考虑取+15 V为宜。2)能向IGBT提供足够的反向栅压。在IGBT关断期间,由于电路中其他部分的工作,会在栅极电路中产生一些高频振荡信号,这些信号轻则会使本该截止的IGBT处于微通状态,增加管子的功耗。重则将使调压电路处于短路直通状态。因此,最好给处于截止状态的IGBT加一反向栅压(幅值一般为5~15 V),使IGBT在栅极出现开关噪声时仍能可靠截止。3)具有栅极电压限幅电路,保护栅极不被击穿。IGBT栅极极限电压一般为+20 V,驱动信号超出此范围就可能破坏栅极。4)由于IGBT多用于高压场合。要求有足够的输入、输出电隔离能力。所以驱动电路应与整个控制电路在电位上严格隔离,一般采用高速光耦合隔离或变压器耦合隔离。5)IGBT的栅极驱动电路应尽可能的简单、实用。应具有IGBT的完整保护功能,很强的抗干扰能力,且输出阻抗应尽可能的低。

7,IGBT的驱动电路有什么特点

IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。输出特性与转移特性:IGBT的伏安特性是指以栅极电压VGE为参变量时,集电极电流IC与集电极电压VCE之间的关系曲线。IGBT的伏安特性与BJT的输出特性相似,也可分为饱和区I、放大区II和击穿区III三部分。IGBT作为开关器件稳态时主要工作在饱和导通区。IGBT的转移特性是指集电极输出电流IC与栅极电压之间的关系曲线。它与MOSFET的转移特性相同,当栅极电压VGE小于开启电压VGE(th)时,IGBT处于关断状态。在IGBT导通后的大部分集电极电流范围内,IC与VGE呈线性关系。IGBT与MOSFET的对比:MOSFET全称功率场效应晶体管。它的三个极分别是源极(S)、漏极(D)和栅极(G)。主要优点:热稳定性好、安全工作区大。缺点:击穿电压低,工作电流小。IGBT全称绝缘栅双极晶体管,是MOSFET和GTR(功率晶管)相结合的产物。它的三个极分别是集电极(C)、发射极(E)和栅极(G)。特点:击穿电压可达1200V,集电极最大饱和电流已超过1500A。由IGBT作为逆变器件的变频器的容量达250kVA以上,工作频率可达20kHz。IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融合了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOS 截止,切断PNP晶体管基极电流的供给,使得晶体管截止。IGBT与MOSFET一样也是电压控制型器件,在它的栅极—发射极间施加十几V的直流电压,只有在uA级的漏电流流过,基本上不消耗功率。
对于大功率igbt,选择驱动电路基于以下的参数要求:器件关断偏置、门极电荷、耐固性和电源情况等。门极电路的正偏压vge负偏压-vge和门极电阻rg的大小,对igbt的通态压降、开关时间、开关损耗、承受短路能力以及dv/dt电流等参数有不同程度的影响。门极驱动条件与器件特性的关系见表1。栅极正电压 的变化对igbt的开通特性、负载短路能力和dvce/dt电流有较大影响,而门极负偏压则对关断特性的影响比较大。在门极电路的设计中,还要注意开通特性、负载短路能力和由dvce/dt 电流引起的误触发等问题(见表1)。表1 igbt门极驱动条件与器件特性的关系由于igbt的开关特性和安全工作区随着栅极驱动电路的变化而变化,因而驱动电路性能的好坏将直接影响igbt能否正常工作。为使igbt能可靠工作。igbt对其驱动电路提出了以下要求。1)向igbt提供适当的正向栅压。并且在igbt导通后。栅极驱动电路提供给igbt的驱动电压和电流要有足够的幅度,使igbt的功率输出级总处于饱和状态。瞬时过载时,栅极驱动电路提供的驱动功率要足以保证igbt不退出饱和区。igbt导通后的管压降与所加栅源电压有关,在漏源电流一定的情况下,vge越高,vds傩就越低,器件的导通损耗就越小,这有利于充分发挥管子的工作能力。但是, vge并非越高越好,一般不允许超过20 v,原因是一旦发生过流或短路,栅压越高,则电流幅值越高,igbt损坏的可能性就越大。通常,综合考虑取+15 v为宜。2)能向igbt提供足够的反向栅压。在igbt关断期间,由于电路中其他部分的工作,会在栅极电路中产生一些高频振荡信号,这些信号轻则会使本该截止的igbt处于微通状态,增加管子的功耗。重则将使调压电路处于短路直通状态。因此,最好给处于截止状态的igbt加一反向栅压(幅值一般为5~15 v),使igbt在栅极出现开关噪声时仍能可靠截止。3)具有栅极电压限幅电路,保护栅极不被击穿。igbt栅极极限电压一般为+20 v,驱动信号超出此范围就可能破坏栅极。4)由于igbt多用于高压场合。要求有足够的输入、输出电隔离能力。所以驱动电路应与整个控制电路在电位上严格隔离,一般采用高速光耦合隔离或变压器耦合隔离。5)igbt的栅极驱动电路应尽可能的简单、实用。应具有igbt的完整保护功能,很强的抗干扰能力,且输出阻抗应尽可能的低。

文章TAG:igbt驱动电压要多少驱动  电压  多少  
下一篇