本文目录一览

1,铁饱和磁通密度是多少

1.8T

铁饱和磁通密度是多少

2,请问铁氧体的饱和磁通密度跟频率有关吗

有关系..频率高.回线会变小而胖 ..测试1KHZ与直流冲击测试的数值都是不同的.
铁氧体软磁我们一般用饱和磁化强度4000gs左右

请问铁氧体的饱和磁通密度跟频率有关吗

3,铁氧体磁通密度一般是多少

低温度系数、低损耗和高饱和磁通密度nizn铁氧体材料及制备方法初始磁导率大于800,饱和磁通密度在400mt以上的nizn铁氧体材料其比损耗系数在100khz下为13×10-6左右,而现在市场需要在100khz下比损耗系数在10×10-6。
铁氧体软磁我们一般用饱和磁化强度4000Gs左右

铁氧体磁通密度一般是多少

4,磁通密度的定义

磁通量密度,简称磁通密度,它从数量上反映磁力线的疏密程度。磁场的强弱,通常用磁感应强度“B”来表示,哪里磁场越强,哪里B的数值越大,磁力线就越密。
最低0.27元/天开通百度文库会员,可在文库查看完整内容>原发布者:liangju290489磁通密度磁通密度是磁感应强度的一个别名,它表示垂直穿过单位面积的磁力线的多少。磁通量密度,简称磁通密度,它从数量上反映磁力线的疏密程度。磁场的强弱,通常用磁感应强度“B”来表示,哪里磁场越强,哪里B的数值越大,磁力线就越密。按照国际单位制磁感应强度的单位是特斯拉,其符号为T:磁感应强度还有一个过时的单位:高斯,其符号为Gs:1T=10000Gs1000mt=1t。这个符号在技术设施中还广泛使用。通常条形磁铁两极附近的磁感应强度大约是几十到几百高斯。在处理与磁性有关问题时,除了要用到磁感应强度外,常常还要讨论穿过某一面积的磁力线数目,称做磁通量,简称磁通,用Φ示。磁通量的单位是韦伯,用Wb表示,以前还有麦克斯韦有Mx表示。如果磁场中某处的磁感应强度为B,在该处有一块与磁通垂直的面,它的面积为S,则穿过它的磁通量就是Φ=BS式中磁感应强度B的单位是高斯(Gs);面积S的单位是平方厘米;磁通量的单位是麦克斯韦(Mx)。公式:1T=1000mt=1000000ut10gs=1mt10000高斯等于1特斯拉,所以1豪高斯也等于10000微特拉斯在国际单位制(SI)中,磁感应强度的单位是特斯拉,简称特(T)。在高斯单位制中,磁感应强度的单位是高斯(Gs),1T=10KGs等于10的四次方高斯。剩余磁通密度磁性材料中当外加磁场强度(包括自退磁场强度)为零时的磁通密度。饱和磁通密度磁性材料磁化到饱和时的磁通密度。;磁场强度单位Oe(奥斯特),A/m,矫顽力定义Hcb、Hcj使磁化至

5,铁氧体磁性材料具有哪些主要应用

铁氧体分软磁铁氧体和永磁铁氧体。  软磁铁氧体  有锰铁氧体(MnO·Fe2O3)、锌铁氧体(ZnO·Fe2O3)、镍锌铁氧体(Ni-Zn·Fe2O4)、锰镁锌铁氧体(Mn-Mg-Zn·Fe2O4)等单组分或多组分铁氧体。电阻率比金属磁性材料大得多,而且有较高的介电性能,因此出现兼有铁磁性和铁电性以及铁磁性和压电性的铁氧体。在高频下具有比金属磁性材料(包括铁镍合金、铝硅铁合金)高得多的磁导率,适用于几千赫到几百兆赫频率下工作。加工铁氧体属于一般陶瓷工艺,因而工艺简单,且节省大量贵金属,成本低。铁氧体的饱和磁通密度Bs低,通常只有铁的1/3~1/5。铁氧体在单位体积中储存的磁能低,限制了它在要求有较高磁能密度的低频、强电和大功率领域中的应用。它较适于高频小功率,弱电场合中应用。镍锌铁氧体可用作收音机里的天线磁棒和中频变压器磁心,锰锌铁氧体可用作电视接收机中的行输出变压器铁心。此外,软磁铁氧体还用于通信线路中的增感器及滤波器的磁心等。近年来还应用作高频磁记录换能器(磁头)。  永磁铁氧体  有钡铁氧体 (BaO·6Fe2O3)和锶铁氧体(SrO·6Fe2O3)。电阻率高,属于半导体类型,故涡流损耗小,矫顽力大,能有效地应用在大气隙的磁路中,特别适于作小型发电机和电动机的永磁体。它不含有贵金属镍、钴等,原材料来源丰富,工艺不复杂,成本低,可代替铝镍钴永磁体。它的最大磁能积(B+H)m较低,因此在相等磁能的情况下,比金属磁体体积大。它的温度稳定性差,质地较脆、易碎,不耐冲击震动,不宜作测量仪表及有精密要求的磁性器件。永磁铁氧体产品主要为各向异性系列。它们可用于制作永磁点火电机、永磁电机、永磁选矿机、永磁吊头、磁推轴承、磁分离器、扬声器、微波器件、磁疗片、助听器等。
你要什麼样的资料?找下生产永磁铁氧体的公司网站就有了。比如找下横店东磁啊,江粉或者小日本的tdk啊,这些基本上都是生产销售永磁铁氧体的公司。你的邮箱多少,发下一些资料给你。

6,为什么磁珠参数上标的有多少欧那个多少欧是什么意思电阻吗

磁珠的功能主要是消除存在于传输线结构(电路)中的磁珠的电路元件符号 RF噪声,RF能量是叠加在直流传输电平上的交流正弦波成分,直流成分是需要的有用信号。要消除这些不需要的信号能量,使用片式磁珠扮演高频电阻的角色(衰减器)。磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。 他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。作为电源滤波,可以使用电感。磁珠的电路符号就是电感但是型号上可以看出使用的是磁珠。在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了。直流成分是需要的有用信号,而射频RF能量却是无用的电磁干扰沿着线路传输和辐射(EMI)。要消除这些不需要的信号能量,使用片式磁珠扮演高频电阻的角色(衰减器),该器件允许直流信号通过,而滤除交流信号。通常高频信号为30MHz以上,然而,低频信号也会受到片式磁珠的影响。磁珠有很高的电阻率和磁导率,等效于电阻和电感串联。在电路中只要导线穿过它即可。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个组件的值都与磁珠的长度成比例。有的磁珠上有多个孔洞,用导线穿过可增加组件阻抗(穿过磁珠次数的平方)。铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其它电路。磁珠的单位是欧姆,而不是亨利,这一点要特别注意。因为磁珠的单位是按照它在某一频率 产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的 DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如600R @ 100Mhz,意思就是在100MHz频率的时候磁珠的阻抗相当于600欧姆。磁珠的主要原料为铁氧体。铁氧体是一种立方晶格结构的亚铁磁性材料。铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商都提供专门用于电磁干扰抑制的铁氧体材料。这种材料的特点是高频损耗非常大,具有很高的导磁率,他可以使电感的线圈绕组之间在高频高阻的情况下产生的电容最小。对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率μ和饱和磁通密度Bs。磁导率μ可以表示为复数,实数部分构成电感,虚数部分代表损耗,随着频率的增加而增加。因此,它的等效电路为由电感L和电阻R组成的串联电路,L和R都是频率的函数。当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。磁珠在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小 但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。两个元件的数值大小与磁珠的长度成正比,而且磁珠的长度对抑制效果有明显影响,磁珠长度越长抑制效果越好。

7,铁氧体的磁导率是多少

测量单位 由于历史的原因,在此手册中采用了CGS制单位,国际制(SI)和CGS制之间的转换可简化于下表2: 表2单位转换表 在CGS制自由空间磁导率的幅值为1且无量纲。在SI制自由空间磁导率的幅值为4π×10-7亨/米 3.3、电感 对于每一个磁芯电感(L)可用所列的电感系数(AL)计算: (14) AL:对1000匝的电感系数 mH N:匝数 所以:这里 这里L是nH 电感也可由相对磁导率确定,磁芯的有效参数见图 10: (15) Ae:有效磁芯面积 cm2 :有效磁路长度 cm μ:相对磁导率(无量纲) 对于环形功率磁芯,有效面积和磁芯截面积相同。 根据定义和安培定理,有效磁路长度是线圈的安匝数(NI)和从外径到外径穿过磁芯面积的平均磁场强度之比。有效磁路长度可用安培定理和平均磁场强度给出的公式计算: (16) O.D. :磁芯外径 I.D. :磁芯内径 电感系数是用单层密绕线圈测量的。磁通密度和测试频率保持与实际一样低,通常低于40高斯和10KHz或更低。对于各种磁导率和材料,能用正常磁导率对磁通密度关系和典型磁导率对频率关系的图形来解释低电平测试的条件。 3.4、磁导率 对于每一个磁芯尺寸的电感系数是建立在相对磁导率的增量上的。在没有直流偏置和低磁通密度时,正常磁导率和增量磁导率是一样的。增量磁导率随直流偏置一起减小的情况以及“增量磁导率对直流偏置”的曲线如图11所示。由“增量磁导率对直流偏置” 曲线看到正常磁导率如同峰值磁导率B。许多设计过程包括选择峰值工作磁通密度去帮助决定磁芯的尺寸。磁材的饱和磁通密度限制了峰值工作磁通密度或被磁材的损耗所限制。在选择磁材、工作磁通密度和决定磁芯的尺寸之后,法拉第定理(下面讨论)用于计算匝数N。最后选择磁导率以满足电感的需要。 L=电感 nH =有效磁路长度 cm Ae=有效磁芯面积 cm2 图11正常和增量磁导率 宽范值的磁导率经常能满足不同的电感需要。 安培定理(也在下面讨论)所给的峰值磁化强度H,是建立在匝数、峰值磁化电流(电感总电流和变压器原方的空载电流)和磁芯磁路长度的基础上的。如图11见到那样,在设计过程开始选择磁导率时,要设置与峰值磁通密度值相应的直流磁磁化强度H。对于铁镍钼(MPP),对于所给的磁磁化强度H,下面图12的选择曲线将给出产生最大电感的磁导率。 图12磁导率选择曲线 图13典型铁镍钼磁芯的增量磁导率和直流偏置曲线 3.5、磁通密度和法拉第定理 磁通密度(B)的水平会影响磁芯损耗和磁导率。除非另有提示,手册中的数据是对正弦波和最大(峰值)磁通密度的。可用法拉第定理表示: (17) Bmax: 最大(峰值)磁通密度(高斯) ERMS:绕组端正弦电压的均方根值(Vrms) N:匝数 Ae:磁芯有效矩形截面积(cm) f: 正弦电压频率 有效面积被认为是磁芯的全部截面积,见图14。但被磁渗透所占有的面积小于有效面积,是由于磁导率的减小而减小的。对于不同的磁导率,手册数据有效包括了来自更小的磁渗透面积。 除此之外,Bmax是在磁芯截面积上的平均最大磁通密度。这个磁通密度是朝内径方向产生的,并朝外径方向减小见安培定理,在下面将会描述。 3.6、磁场强度和安培定理 安培定理是表示磁场强度(H)和电流、匝数、和磁路长度的关系:: (18) H:磁场强度(奥斯特) N:匝数 I:电流(安培) L:磁路长度(cm) 按安培定理,磁场强度朝内径方向更强(在这里 最短)。有效磁路长度提供了穿过磁芯截面积的磁场强度的平均值: (19) Haverage:从内径到外径穿过磁芯的平均磁场强度 :同样单独列于磁芯规格的有效磁路长度(cm) N:匝数 I:电流(安培) 在此手册中均使用平均磁场强度,除非另有提示。 磁场强度可用正常的磁化曲线估算磁通密度。见有关磁导率分布。被定义的相对磁导率为: (20) μ:相对磁导率 B: 磁通密度(高斯) H: 磁场强度(奥斯特) 对于平均绕组的直流电阻可由下式计算: (21) :匝数的平均长度 N:匝数 r:导线电阻(欧姆/1000英尺)见导线表。 除绕组的正常直流电阻外,由于交流电流的集肤效应绕组电阻存在一个增量变化,可被近似计算: (22) (23) d=导线直径(英) f=频率(Hz) ℃=工作温度 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻 抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系 在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。 图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。 图3铁氧体磁环的磁导率、损耗系数和频率的关系 图4给出三种不同材料的总阻抗和频率的关系。J材料在超过1~20MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。在1MHz,W材料阻抗比J材料高20-50%,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100%。在2MHz以上或以下,对于滤波器所要求的规范,J或W是优先的。 图4三种不同材料的阻抗和频率的关系 1.2、磁芯的形状 对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。环形磁芯必须用手绕制(或在独特的环形绕线机上绕制)。正常情况要用一个非金属的分隔板放置在两个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。 具有附件的E形磁芯比环形磁芯贵,但组装成一个整体只需较小的代价。绕制E形磁芯的骨架相对便宜。为了分隔两个绕组可购到有分隔板的骨架并可安装在PC板上。 E形磁芯有更多的泄漏电感,在共模滤波器中对于不同的滤波是有用的。E形磁芯为了增加泄漏电感可以豁开缝隙,以便吸收有害的共模和差模噪声。 1.3、磁芯的选择 下面给出环形磁芯的设计步骤,单层共模电感见图5。为了尽量减小绕组电容和防止由于不对称绕组引起的磁芯饱和,单层设计是经常应用的。步骤中假设两个相反的绕组之间的最小自由空间为30度。 图5单层共模电感的结构 对于共模电感所需的基本参数是电流(I)、阻抗(ZS)、和频率(f)。电流决定导线的尺寸。一个保守的400A/cm2电流密度不会在导线上产生有效的热量。而一个过分的800A/cm2电流密度会引起导线发热,这两个等级可用选择图表表示。 在所给频率上,规定一个最小的电感阻抗是正常的。这个频率通常足够低并假设感抗XS能提供图2所示的阻抗。随后电感可计算为:(2) (1) 用已知的电感和电流乘积LI基础上的图6和图7能用于选择磁芯的尺寸,这里L是电感(mH)和I是电流(A)。建立在电流密度(Cd)400或800 A/cm2基础上的导线尺寸(AWG)可用下式计算: (2) 匝数可由磁芯的AL值决如下: (3) 1.4、设计举例 在10KHz阻抗为100Ω时,电流为3A,由式(1)计算得LS=1.59mH;用800 A/cm2电流密度时,LI乘积为4.77,为了选择材料可从图7查得磁芯尺寸。在此例,选择W材料直至1MHz可以给出高的阻抗,见图4。图7给出磁芯材料为W-41809-TC。由表1可查得磁芯尺寸和AL值。用AL=12200 mH /1000匝,式(3)给出N=12匝每边。用800 A/cm2时, 式(2)给出AWG=21。 表1环形磁芯尺寸及其AL值 二、整流电感设计 典型的稳压器电路包含三个部分:晶体开关管、二极箝位管、和LC滤波器。一个不稳压的直流电压加到通常工作在1~50KHz频率的晶体开关管。当开关处在ON状态时,输入电压Ein加到LC滤波器,结果导致通过电感的电流增大;当开关处在OFF状态时,用储存在电感和电容内的过剩能量来保持输出功率。通过调整ON状态时的晶体开关管的导通时间ton和用来自输出端的反馈系统来获得稳压。结果稳定的直流输出电压可表示为: Eout=Eintonf (4) 图8典型的稳压器电路 2.1、组件选择 开关系统包含晶体管和来自稳压器输出的反馈。晶体管的选择包含两个因素:(1)电压等级需大于最大的输入电压(2)为了保证有效地工作,截止频率特性必须高于实际的开关频率。反馈电路通常包括运放和比较器。对于二极箝位管的要求和晶体管的选择相同。如果已知:(1)最大和最小的输入电压(2)要求的输出(3)最大允许的纹波电压(4)最大和最小的负载电流(5)想要的开关频率,那幺就可获得电感和电容的值。LC滤波器的设计就容易完成。首先晶体管的截止时间toff可计算为: toff=(1- Eout/Ein max)/f (5) 当Ein减至它的最小值 fmin=(1- Eout/Ein max)/ toff (6) 用这些值,所需的电感和电容可以算得: 通过电感所允许的纹波峰-峰电流(Δi)可由下式给出: Δi=2IO min (7) 电感可用下式计算: L= Eouttoff/Δi (8) 对于Δi的计算值是有点任意,不过对于电感可以调整以获得实际值。 最小的电容可由下式给出: C=Δi/8f minΔeO (9) 最后,电容最大的等效串联电阻ESR是: ESR max =ΔeO/Δi (10) 2.2、电感设计 在高频下铁氧体E形和罐形磁芯能提供成本降低和低磁芯损耗的优点。对于开关稳压器,F和P材料被推荐是因为他们的温度和直流偏置特性。为避免饱和,可采用增加铁氧体型材气隙的办法使磁芯有效地使用。 对于开关稳压器的应用,这些磁芯的选择步骤能简化电感的设计。假设绕组系数50%和导线载流容量为500园周面积(Circular Mils)/安培,我们能决定最小的磁芯尺寸。 设计应用的两个仅有参数必须知道: ①电感需要用的直流偏置。 ②直流电流。 (1)计算产品的LI2 这里:L=具有直流偏置的所需电感 I=最大直流输出电流 I =IO max+Δi (11) (2) 将LI2值设置在铁氧体磁芯的选择图表中(P.4.15~4.18)。跟踪与第一根磁芯尺寸曲线相交的座标,在Y轴上可读得最大额定电感AL,它表示最小的磁芯尺寸和最大的AL,在那一点饱和将被避免。 (3)若磁芯的AL较小于在座标上获得的最大值,那幺对于电感来说,任何磁芯尺寸线只要与LI2座标相交就表示是一个可使用的磁芯。若可能,使用标准气隙的磁芯是可取的,这是由于他们的有效性。这些在座标上用虚线表示,在此手册能找到。 (4)需要的电感L、磁芯尺寸、和磁芯的额定电感(AL)是已知的,那幺可用下式计算线圈的匝数:(12)

文章TAG:铁氧体的饱和磁通密度是多少铁氧体  饱和  磁通密度  
下一篇