本文目录一览

1,lme49720na 与lme49720ha有什么区别

lme49720na是塑封,lme49720ha是金封,音质HA比MA好很多,HA的底噪更少,干扰更少,参数更好,散热更好!

lme49720na 与lme49720ha有什么区别

2,muses02可以代换lme49720吗

muses02可以代换5532,。有个别参数要注意,5532最低工作电压±3V,muses02的最低工作电压为±9V,只要不是在这低压下工作就没问题。另外muses02的等效输入噪声稍比5532大一点点,其他参数都比5532好。
生产24c02的厂家很多,n这个后缀字母在不同厂家的产品名称中可能代表不同的封装形式,但是所有的24c02功能都是一样的,都是1kbit的eeprom存储器。

muses02可以代换lme49720吗

3,在音响前级电路中正电源电压和负电源电压绝对值不同有什么影响

你好!一般说,正负电压差0.38伏不会对运放造成什么影响!前级供电一般说应单独供电!接地由印刷板及桥接导线决定噪声电平!可加一支双12伏变压器,然后用78、79三端稳压三极管稳压即可!数字运放块只要块脚一致,基本上是通用的!--寂寞大山人打字不易,采纳哦!
你最好把图附上
专业解答:1: 正电源比负电源高0.7V 不能使5534工作在甲类,换其它运放也不行。2: 正负电源不平衡,破坏运放静态电流,会导致声音发飘,平衡度不佳。3:要求不高,则采用负12降低到-11.6比较方便,和正的归位12V效果一样。4;外接一组12V给前级供电效果最好,不过要分清后接变压器和原有变压器同相位相接,否者影响音质。5:地分散问题,只要把供电线约束成小环路即可避免。6:独立供电,普通整流,然后采用伺服正负12V电路最好,当然嫌麻烦可以选78和79系列,当然音质要差些。

在音响前级电路中正电源电压和负电源电压绝对值不同有什么影响

4,RS485的工作电压是多少

工作电压一般都是5V的不过也有3.3V的485芯片但很少用
差模电压二楼已经说了。共模电压(对公共线的电压)的话,最好不要高于5v平均值。因为共模电压太高了(>24v),会让485芯片的保护电路一直处于工作状态分流电阻拉低共模电压防止涌入门电流的电压过高,长时间有电流通过保护电流会让485芯片温度一直上升,最后温度超过芯片能够承受的温度就会导致芯片冒烟烧毁芯片。最后连外部保护电路也跟着烧掉。
上面的答案已经说的很清楚了,RS485工作电压其实就电平颠倒原理,两根线AB,通过在通讯 的时候按照主从约定好的速率,反转电平,来完成数据0和1的识别。这很简单,我就答点不一样的吧,关于这种原理的更深入分析。485在现场施工上的一些问题,也可以从原理层面分析一下:简单来说,主要是由于两方面原因造成的:一、差分弱电流浮压方式传输信号方式采用电压差分方式传输数据,采样浮动电压的交替变化,物理层一个发送端对应多个高阻输入的方式。由于接收器是多个高阻输入,虽然发送端是推挽输出,在距离发送端的近端,具有一定的干扰电压通过磁耦合入总线,产生的电压会被发送端引流吸收。但由于长导线的电阻,距离发送器的长导线远端,电压极易被干扰。如下图:所以常常RS485 要加终端匹配电阻,但弊端相当明显:1, 增加了施工步骤,和现场调试时间。2, 即使 100Ω的终端匹配电阻,引流干扰的能力也只有0.05mA 。和动辄几十mA 真实负载的电源抗扰度,完全不是一个数量级!0.05mA VS 几十mA !3, 终端电阻的加入,加大了发送端 RS485 芯片的发热,降低了RS485 的线缆驱动能力。4,如果终端电阻损坏,增加的部件,增加的风险!整个总线将彻底陷入瘫痪。二,信号的与电源线分离:电源与信号线分立导致的隔离成本与不隔离的共模电压风险,由于RS485 ,CAN 信号线与供电线分离。导致远传后,由于功率线线损压降,导致的远端差模电压不同,不隔离的话,当线较细或距离较远时。会导致RS485 或CAN 芯片损坏可能。而供电与通讯同属两线的二总线类似POWERBUS 技术,则从原理上没有此问题。无需隔离。安全可靠。
RS-485 的 2线 电压不断变化的,从而 能传输 数据楼主 说的 工作电压 是指什么?RS-485 通常 是 有 RS-485收发器 芯片来 进行数据 传输这些 不同的芯片 的 工作电压 会有差别的但具体到 某个 芯片来说 是 固定 的如 max485  采用单一电源+5 V工作,额定电流为300 μA,采用半双工通讯方式。它完成将TTL电平转换为RS-485电平的功能。MAX485芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器。

5,LME49720这个双运放和NE5532一样具有内补偿功能吗

它们都是内补偿运放LM4562是美国国家半导体公司近年推出的高保真双运放,其失真超小,仅有0.00003%的总谐波失真及噪声(THD+N),换言之,这款运算放大器的失真几乎可以忽略不计。LM4562芯片具有极低失真率、低噪声、高转换速率、很宽的工作电压范围以及较大输出电流等优点,性能之高是前所未有的。由于这款运算放大器具有这些优点,因此适用于专业级及高端的音频系统,如音像系统接收器、前置放大器、音频解码器和高保真功放以及各种医疗成像系统及工业设备。LM4562芯片的设计非常独特,不但内置高速的6MHz单位增益带宽运算放大器,而且另外还加设了一个专有的立体声音频驱动放大器。标准工作状态下,这款运算放大器的输入噪声密度低至2.7nV/√Hz,中频的噪声转角 (noise corner) 达60Hz,输出电流达26mA,可驱动600Ω的负载。LM4562芯片的转换速率达20V/μs,增益带宽积高达55MHz。LM4562芯片可以在±2.5V至±17V之间的供电电压范围内保持工作稳定,最大输出电流高达45mA。该款芯片在上述的供电电压范围内操作时,其输入电路的共模抑制比(CMRR)及电源抑制比(PSRR)都高达108dB以上,而输入偏置电流则低至10μA(典型值)。
是的,它们都是内补偿运放。你查看一下手册就知道了。另外,向你推荐一款高性能运放LM4562,其工作电压范围宽,精度高,性能丝毫不逊于LME49720。LM4562是美国国家半导体公司近年推出的高保真双运放,其失真超小,仅有0.00003%的总谐波失真及噪声(THD+N),换言之,这款运算放大器的失真几乎可以忽略不计。LM4562芯片具有极低失真率、低噪声、高转换速率、很宽的工作电压范围以及较大输出电流等优点,性能之高是前所未有的。由于这款运算放大器具有这些优点,因此适用于专业级及高端的音频系统,如音像系统接收器、前置放大器、音频解码器和高保真功放以及各种医疗成像系统及工业设备
是的,它们都是内补偿运放。你查看一下手册就知道了。另外,向你推荐一款高性能运放LM4562,其工作电压范围宽,精度高,性能丝毫不逊于LME49720。LM4562是美国国家半导体公司近年推出的高保真双运放,其失真超小,仅有0.00003%的总谐波失真及噪声(THD+N),换言之,这款运算放大器的失真几乎可以忽略不计。LM4562芯片具有极低失真率、低噪声、高转换速率、很宽的工作电压范围以及较大输出电流等优点,性能之高是前所未有的。由于这款运算放大器具有这些优点,因此适用于专业级及高端的音频系统,如音像系统接收器、前置放大器、音频解码器和高保真功放以及各种医疗成像系统及工业设备。LM4562芯片的设计非常独特,不但内置高速的6MHz单位增益带宽运算放大器,而且另外还加设了一个专有的立体声音频驱动放大器。标准工作状态下,这款运算放大器的输入噪声密度低至2.7nV/√Hz,中频的噪声转角 (noise corner) 达60Hz,输出电流达26mA,可驱动600Ω的负载。LM4562芯片的转换速率达20V/μs,增益带宽积高达55MHz。LM4562芯片可以在±2.5V至±17V之间的供电电压范围内保持工作稳定,最大输出电流高达45mA。该款芯片在上述的供电电压范围内操作时,其输入电路的共模抑制比(CMRR)及电源抑制比(PSRR)都高达108dB以上,而输入偏置电流则低至10μA(典型值)。
LME49720这个双运放和NE5532一样具有内补偿功能;LM4562是近年来由National Semiconductor推出的高保真双运放。它的失真非常小,只有0.00003%的总谐波失真和噪声(THD + N)。换句话说,该运算放大器的失真几乎可以忽略不计。LM4562具有极低失真,低噪声,高压摆率,宽工作电压范围和大输出电流的优点。表现是前所未有的。由于该运算放大器的优势,它适用于专业和高端音频系统,如音频和视频系统接收器,前置放大器,音频解码器和高保真放大器,以及各种医疗成像系统和工业设备。扩展资料LM4562采用独特设计,内置高速6MHz单位增益带宽运算放大器和专有的立体声音频驱动放大器。在标准工作条件下,运算放大器的输入噪声密度低至2.7nV /√Hz,中频噪声角为60Hz,输出电流为26mA,可驱动600Ω负载。 LM4562的转换速率为20V /μs,增益带宽积高达55MHz。LM4562在±2.5V至±17V的电源电压范围内稳定,最大输出电流高达45mA。在上述电源电压范围内工作时,输入电路的共模抑制比(CMRR)和电源抑制比(PSRR)超过108dB,而输入偏置电流低至10μA(典型值)。参考资料:搜狗百科-NE5532

文章TAG:lme49720电压多少好听电压  多少  好听  
下一篇