mos管开启的时间控制多少,mos管一些感性控制问题
来源:整理 编辑:亚灵电子网 2023-01-19 06:17:46
1,mos管一些感性控制问题
至少也要12N80这样的参数的管子。线圈并联阻容吸收网络,参考开关电源的吸收电路吧。需要反复调整参数,调好之前估计要付出几个管子的代价。
2,mos管propagatiom delay time指的什么意思
propagatiom delay time传播延迟时间搜一下:mos管propagatiom delay time指的什么意思
3,3401mos管全开怎么控制
这是一个控制电源通断的电路。AO3401是增强型PMOS, 简单来说,当Vgs(即Q7的1-2间电压)有一个负压时, Q7就会导通,对于AO3401来讲,完全开通电压大约为-10V, 但-3.3V也可以基本导通,只是阻抗略大(大约100毫欧), 具体不同Vgs电压下导通阻抗可以查阅AO3401手册。对于图中电路, 当CMMB_PWRON大于等于3.3V时,AO3401处于关断状态, 后端电路没有供电,当CMMB_PWRON为0V时,AO3401导通, 后端电路得到供电。使用此开关时,L12不应焊接,否则此电路没有意义。
4,MOS管特性包括电流流向沟道开启条件
MOS管的特性:1、它的栅极-源极间电阻很大,可达10GΩ以上。2、噪声低、热稳定性好、抗辐射能力强、耗电省。3、集成化时工艺简单,因此广泛用于大规模和超大规模集成电路之中。
MOS管有N沟道和P沟道两类,每一类又分为增强型和耗尽型两种,凡栅极-源极电压为零时漏极电流也为零的管子,均属于增强型管;凡凡栅极-源极电压为零时漏极电流不为零的管子,均属于耗尽型管。
电路中常用增强型MOS管,其工作原理:当栅极-源极电压变化时,将改变衬底靠近绝缘层处感应电荷的多少,从而控制漏极电流的大小。
电流流向:由漏极d流向源极s。
沟道开启条件:N沟道增强型场效应管:当VGS>VT(开启电压)时,衬底中的电子进一步被吸至栅极下方的P型衬底表层,使衬底表层中的自由电子数量大于空穴数量,该薄层转换为N型半导体,称此为反型层。形成N源区到N漏区的N型沟道。把开始形成反型层的VGS值称为该管的开启电压VT。这时,若在漏源间加电压 VDS,就能产生漏极电流 I D,即管子开启。 VGS值越大,沟道内自由电子越多,沟道电阻越小,在同样 VDS 电压作用下, I D 越大。这样,就实现了输入电压 VGS 对输出电流 I D 的控制。
MOS管的三个工作区域:可变电阻区、恒流区和夹断区。
P沟道增强型MOS管的开启电压VT小于零,当VGS小于VT时,管子才导通,漏极-源极之间应加负电源电压。
5,MOSFETMOS管中的开关时间可以改变电压的原理
看看晶闸管的相关知识,晶闸管的整流、调压电路知识大体来说就是通过控制MOS管的通断来削波(交流电是正弦波,比较220V的市电,电压从0值一直变化到最大值,让交流电通过MOS管,比如需要110V的电压输出,可以在交流电上升至110V时让MOS管断开,下次电压过0时再导通,再到110V时再断开,反复如此,可以得到110V交流电,使用整流电路可以变成直流电)学过这个东西,很久不用了,大概就是这么个原理我当时用的书是“半导体变流技术 第2版”,机械工业出版社出版,上海理工大学 莫正康 主编,主要介绍晶闸管的整流、逆变、调压、变频原理MOSFET开关时间改变电压的原理其实就是PWM(脉冲宽度调节)控制,开关电源里面的MOSFET都是和电感或者电容这些储能元件配套使用的。一般情况下MOSFET开的时候会向电感、电容这些元件中储存能量。MOSFET关闭的时候这些储能元件要么和原来的输入叠加形成升压电路,要么独自输出形成降压电路。(这里只是举例,还有升降压电路不讨论了。) 你可以理解为,MOSFET打开的时间越长,电感和电容中储存的能量越高,可以形成的输出也就越高。MOSFET打开的时间越短,储能元件中能量约小,形成的输出也就越低。 这就是MOSFET改变电压的原理。具体还得找几个电路进行分析。如果BOOST、BUCK电路,都是最基本的。
6,请教MOS管做开关电路
你电路的问题很明显,要了解原理,请参考以下电路:带软开启功能的MOS管电源开关电路这是很通用和成熟的电路,原理讲解参考自《带软开启功能的MOS管电源开关电路》。MOS管作为开关元件,同样是工作在截止或导通两种状态。由于MOS管是电压控制元件,所以主要由栅源电压uGS决定其工作状态。MOS管在导通与截止两种状态发生转换时同样存在过渡过程,但其动态特性主要取决于与电路有关的杂散电容充、放电所需的时间,而管子本身导通和截止时电荷积累和消散的时间是很小的。MOS管也是三端压控元件,三端分别是G、D、S,可以等效于普通三极管的B、C、E三极,VGS的电压(=VG-VS)控制Mos 开关状态:当VGS大于Von(开启电压,NMOS为2~4V,PMOS为-2~-4V)时就使得Mos打开,D& S两极之间导通,压降为零,阻抗较小,零点几欧姆;同理当VGS小于Von时就使得Mos处于关闭状态,D& S两极之间阻抗很大;所以,G极就是控制极;要注意的是,Vgs不能太高,比如IRF530,Von的最大值为4V,可是击穿电压为正负20V;又比如IRF9530,开启电压为最大-4V,也就是说Vgs=-5V时已经打开,开启电压上限也为正负20V,当Vgs=-21V或者22V时,管子会被击穿。通常使用时,可以使所加电压Vgs=正负9伏比较适合。电路错了,PMOS你还D入S出?也就是说,S和D反了,调过来就对了。这个电路很常用,类似于PNP型三极管,对P三极管来说,E接电源入,C接控制输出,同理如上。G极电压根据MOS参数(开启电压),一般2-5V,要让管子起到开关作用,必须给G极开关信号。详情参考中国电子DIY之家详细分析■mos管开关电路中要用到MOS场效应管来代替开关,场效应管有三个极:源极S、漏极 D和栅极(或叫控制极)G.工作原理是:在给源极和漏极 之间加上正确极性和大小的电压(因为管型而异)后,再给G极和源极之间加上控制电压,就会有相应大小的电流从源极流向漏极 ,如果信号电压够大,这个电路就能瞬间饱和而成为一个开关了。
7,MOS管参数
你确定有MT3205这个型号?我在比较权威的电子元器件网站怎么查不出来?另外,前面这个应该是IRF3205,这个很常见,可以轻松买到。你要是不放心,直接用前面这个好了。mos管主要参数如下:1.开启电压vt·开启电压(又称阈值电压):使得源极s和漏极d之间开始形成导电沟道所需的栅极电压;·标准的n沟道mos管,vt约为3~6v;·通过工艺上的改进,可以使mos管的vt值降到2~3v。2. 直流输入电阻rgs·即在栅源极之间加的电压与栅极电流之比·这一特性有时以流过栅极的栅流表示·mos管的rgs可以很容易地超过1010ω。3. 漏源击穿电压bvds·在vgs=0(增强型)的条件下 ,在增加漏源电压过程中使id开始剧增时的vds称为漏源击穿电压bvds·id剧增的原因有下列两个方面:(1)漏极附近耗尽层的雪崩击穿(2)漏源极间的穿通击穿·有些mos管中,其沟道长度较短,不断增加vds会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的id4. 栅源击穿电压bvgs·在增加栅源电压过程中,使栅极电流ig由零开始剧增时的vgs,称为栅源击穿电压bvgs。5. 低频跨导gm·在vds为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导·gm反映了栅源电压对漏极电流的控制能力·是表征mos管放大能力的一个重要参数·一般在十分之几至几ma/v的范围内6. 导通电阻ron·导通电阻ron说明了vds对id的影响 ,是漏极特性某一点切线的斜率的倒数·在饱和区,id几乎不随vds改变,ron的数值很大,一般在几十千欧到几百千欧之间·由于在数字电路中 ,mos管导通时经常工作在vds=0的状态下,所以这时的导通电阻ron可用原点的ron来近似·对一般的mos管而言,ron的数值在几百欧以内7. 极间电容·三个电极之间都存在着极间电容:栅源电容cgs 、栅漏电容cgd和漏源电容cds·cgs和cgd约为1~3pf·cds约在0.1~1pf之间8. 低频噪声系数nf·噪声是由管子内部载流子运动的不规则性所引起的·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化·噪声性能的大小通常用噪声系数nf来表示,它的单位为分贝(db)·这个数值越小,代表管子所产生的噪声越小·低频噪声系数是在低频范围内测出的噪声系数·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小
文章TAG:
mos管开启的时间控制多少mos管 开启 时间