wifi的阻抗匹配是多少,无线通信系统的同轴线阻抗是多少
来源:整理 编辑:亚灵电子网 2024-01-01 10:58:39
本文目录一览
1,无线通信系统的同轴线阻抗是多少

2,无线wifi抗干扰能力是多少
一般三到五米之内其实是没啥大问题的!客服48为你解答。随选宽带,想快就快,中国电信贵州客服公众号回复关键词“随选宽带”可以直接办理,方便快捷。

3,WIFI天线的阻抗是多少欧

4,wifi测试cable线为什么要加负载
这里是说calibration的时候用50欧姆的Cal Kit做verification吗,既然你加的是50欧姆的负载,那说明你的传输cable也是50欧姆的阻抗,所以这就是叫阻抗匹配,再具体点说:传输线终端所接负载阻抗ZL 等于传输线特性阻抗Z0 时,称为传输线终端是匹配连接的。匹配时,传输线上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此,当你接上终端负载(DUT)时,匹配能保证全部信号功率的接收。
5,阻抗匹配是什么
你原来的输出负载不是600欧,你就要把输出负载匹配成600欧,所以阻抗匹配就是使输出负载阻抗转换,串并联一些电阻使总负载达到600欧就行了
6,线路阻抗匹配
简单的说就是为了线路能得到最大的输出功率。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
7,在无线电路中用输出变压器进行阻抗匹配诺负载阻抗减少了则变
短路阻抗小的变压器是吧?主空道小,线圈高度高,减少匝数都行。在无线电路中,用输出变压器进行阻抗匹配。诺负载阻抗减少了,则变压器二次绕组匝数应是(减少) 。输出变压器的次级匝数/初级匝数=√(次级阻抗/初级阻抗),即次级匝数正比于√次级阻抗,比如次级阻抗变为原来的50%,则次级匝数应该变为原来的√50%=70.7%。即减少了。
8,什么叫阻抗匹配
阻抗匹配就是射频源阻抗与传输线及负载阻抗之间互相适配,得到最大功率输出的一种工作状态。阻抗匹配有两种形式,一是负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。二是负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。这时在负载阻抗上可以得到最大功率。这种匹配条件称为共轭匹配。在高频电路中,当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线特性阻抗 与负载阻抗 不相等时,传输线上除了出现入射波外,还会出现反射波,反射波的存在意味着传输效率的降低,这是因为传送到传输线终端的功率不能全部为负载所吸收。信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系叫做阻抗匹配。阻抗匹配是为了达到最大的传输效率,使负载能得到最大功率,信号不失真,阻抗不匹配,则信号在传输过程中会失真,还有就是损耗在信号源上的功率会增大。详见百度百科。这是“电路分析基础”涉及的知识,信号用复数来表示,需要复数相关知识才理解的更透。
9,什么是阻抗匹配
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
更多资料请访问 《《《《 微波网 》》》》阻抗匹配在高频设计中是一个常用的概念。是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
详细的看看下面链接就全明白啦!【请仔细品味-此为网络上最透彻的回答。如果没有学过微波电路,第二部分很难理解】
阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。
========================================================================== 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:
P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)
=U*U*R/[(R-r)*(R-r)+4*R*r]
=U*U/{[(R-r)*(R-r)/R]+4*r}
对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。
从以上分析我们可以得出结论:
如果我们需要输出电流大,则选择小的负载R;
如果我们需要输出电压大,则选择大的负载R;
如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。
有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。
=========================================================================
在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。
传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。
这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。
当阻抗不匹配时,有哪些办法让它匹配呢?
第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。
第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。
第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。
【这是我收藏的一个朋友的回答,非常清晰、准确】
文章TAG:
wifiwifi的阻抗匹配是多少 无线通信系统的同轴线阻抗是多少